THE NUCLEAR MAGNETIC RESONANCE PROPERTIES OF CHROMIUM, MOLYBDENUM AND TUNGSTEN COMPOUNDS

MARTIN MINELLI and JOHN H. ENEMARK

Department of Chemistry, University of Arizona, Tucson, Arizona 85721 (U.S.A.)

ROBERT T.C. BROWNLEE, MAXWELL J. O'CONNOR † and ANTHONY G. WEDD

Department of Chemistry, La Trobe University, Bundoora, Victoria 3083 (Australia) (Received 2 January 1985)

CONTENTS

A.	Intro	duction	173
	(i)	History	173
	(ii)	Current status	175
B.	Refe	rence standards	177
C.	Expe	rimental techniques	178
	(i)	Spectrometer properties	178
		(a) Probe pulse characteristics	178
		(b) Acoustic ringing and probe ringing	179
	(ii)	Observation of narrow signals	180
	(iii)	Observation of broad signals	180
	(iv)	Chemical shifts	182
	(v)	Linewidths	182
	(vi)	Methods of improving sensitivity	183
		(a) Increasing the number of NMR active nuclei in the sample	183
		(b) Decreasing the molecular correlation time	183
		(c) Increasing the sensitivity of the spectrometer	183
		(d) Using a transverse probe to increase sensitivity	185
		(e) Using multiple pulse sequences to reduce probe ringing	185
		(f) Conclusions	186
	(vii)	Observation of ¹⁸³ W resonances	187
D.		mium-53 NMR	187
E.	Moly	bdenum-95 and -97 NMR	188
	(i)	Molybdenum(VI) compounds	190
		(a) Molybdate and the polyoxomolybdates	190
		(b) Molybdate derivatives	196
		(c) Copper-molybdenum-sulfur clusters	197
		(d) Hydroxylamidomolyhdanum(VI) compounds	100

[†] Deceased 18 March 1985; this review is dedicated to his memory.

		(e) cis-Dioxomolybdenum(VI) compounds	200
		(f) Oxo, nitrido and imido compounds	204
		(g) fac-Trioxomolybdenum(VI) compounds	204
	(ii)	$Molybdenum (V)\ compounds \dots \dots$	205
	(iii)	Molybdenum(IV) compounds	208
	(iv)	Molybdenum(III) compounds	209
	(v)	Molybdenum(II) compounds	210
		(a) Tricarbonyl compounds	210
		(b) Dicarbonyl compounds	213
		(c) Diastereomeric compounds	215
		(d) Isocyanide compounds	216
		(e) Binuclear compounds	218
	(vi)	Molybdenum(I) compounds	218
	(vii)	Molybdenum(0) compounds	219
	` '	(a) Pentacarbonyl compounds	220
		(b) Tetracarbonyl compounds	227
		(c) Tricarbonyl compounds	227
		(d) Dicarbonyl and monocarbonyl compounds	228
		(e) Dinitrogen compounds	230
	(viii)	Mononitrosyl and thionitrosyl compounds	230
	(ix)	Dinitrosyl compounds	232
	(x)	Molybdenum-mercury compounds	234
	(xi)	Spin-spin couplings between 95 Mo and other nuclei	234
	(11)	(a) 95 Mo-31 P coupling	235
		(b) 95 Mo-19 F coupling	235
		(c) 95 Mo-17 Coupling	240
		(d) 95 Mo-14 N coupling	240
		(e) 95 Mo-1H coupling	241
	(xii)	Relaxation time studies	241
	, ,	Experiments with the enzyme xanthine oxidase	243
Е		gsten-183 NMR	244
1.	(i)	Tungstate and the polyoxotungstates	245
	(1)	(a) Heteropoly-12-tungstate anions	251
		(b) Heteropoly-11-tungstate anions	252
		(c) Heteropoly-18-tungstates and related species	256
		(d) Trivalent heteropolytungstate derivatives	258
		(e) General comments	258
	(ii)	Other tungsten(VI) compounds	260
	(iii)	Tungsten(IV) and -(III) compounds	261
	(iv)	Tungsten(II) compounds	261
	(v)	Tungsten(0) compounds	262
	` .	Spin-spin coupling between ¹⁸³ W and other nuclei	
	(vi)	opin-spin coupling between w and other nuclei	263
		(a) ¹⁸³ W – ³¹ P coupling	265
		(b) ¹⁸³ W ⁻¹⁹ F coupling	265
		(c) ¹⁸³ W – ¹³ C coupling	266
_	<i>C</i>	(d) ¹⁸³ W- ¹ H coupling	266
G.		clusions	266
	(i)	Chemical shifts	266
		(a) General comments	266

	shielding of heavy nuclei
	dependence of the chemical shift
	g sensitivity
	oupling constants
	MR
	• • • • • • • • • • • • • • • • • • • •
ABBREVIATIONS	
[12]aneN ₃	1,5,9-triazacyclododecane
[9]aneN ₃	1,4,7-triazacyclononane
[9]aneS ₃	1,4,7-trithiacyclononane
acacH	acetylacetone
acamH	N, N-diethylacetoacetamide
$B(pz)_4$	tetrakis(1-pyrazolyl)borate
bpy	2,2'-bipyridine
Br ₄ -cat	3,4,5,6-tetrabromocatechol
Bu ⁱ	isobutyl
Bu ⁿ	n-butyl
Bu ^s	s-butyl
Bu ^t	t-butyl
Bz	benzyl
cat	catechol
cht	cycloheptatriene
Ср	cyclopentadienide, C ₅ H ₅ ⁻
Су	cyclohexyl
cystH	L-cysteine
depe	1,2-bis(diethylphosphino)ethane
dien	diethylenetriamine
dpmH	dipivaloylmethane
dppe	1,2-bis(diphenylphosphino)ethane
dppm	bis(diphenylphosphino)methane
dppp	1,3-bis(diphenylphosphino)propane
dptpe	1,2-bis(di-p-tolylphosphino)ethane
dtne	1,2-bis(1,4,7-triaza-1-cyclononyl)ethane
dttdH ₂	2,3,8,9-dibenzo-1,4,7,10-tetrathiadecane
edtaH ₄	$\{(HO_2CCH_2)_2NCH_2\}_2$
eedtaH ₄	$O\{CH_2CH_2N(CH_2CO_2H)_2\}_2$
egtaH ₄	$\{CH_2OCH_2CH_2N(CH_2CO_2H)_2\}_2$
Et	ethyl

hydrotris(3,5-dimethyl-1-pyrazolyl)borate

 $HB(Me_2pz)_3$

HB(pz)₃ hydrotris(1-pyrazolyl)borate

 $\begin{array}{ll} \text{hbdabH}_2 & N, N'\text{-bis}(2\text{-hydroxybenzyl})\text{-1,2-diaminobenzene} \\ \text{hbdaeH}_2 & N, N'\text{-bis}(2\text{-hydroxybenzyl})\text{-1-diaminoethane} \end{array}$

 $\begin{array}{ll} \text{hedtaH}_3 & (\text{HO}_2\text{CCH}_2)_2\text{NCH}_2\text{CH}_2\text{N}(\text{CH}_2\text{CO}_2\text{H})\text{CH}_2\text{CH}_2\text{OH} \\ \text{hpdtaH}_4 & (\text{HO}_2\text{CCH}_2)_2\text{NCH}_2\text{CH}(\text{OH})\text{CH}_2\text{N}(\text{CH}_2\text{CO}_2\text{H})_2 \end{array}$

 $idaH_2$ $NH(CH_2CO_2H)_2$

L-cysORH L-cysteine-R-ester (R = Me, Et)

m-xyl m-xylene

mabH₂ 2,3-bis(2-mercaptoanilino)butane maeH₂ 1,2-bis(2-mercaptoanilino)ethane

Me methyl

MepenH O-methyl-(S)-penicillamine

mes mesitylene

Me₂bpy 4,4'-dimethyl-2,2'-bipyridine

 $Me_3[9]$ ane N_3 N, N', N''-trimethyl-1,4,7-triazacyclononane

Me₅Cp pentamethylcyclopentadienide

 $mpeH_2$ N, N'-bis(2-mercapto-2-methylpropyl)ethylenediamine

mqH 8-mercaptoquinoline NMP N-methylpyrrole ntaH₃ N(CH₂CO₂H)₃

ox oxalate o-xyl o-xylene p-xyl p-xylene

 $pdtaH_4$ $(R,S)-(HO_2CCH_2)_2NCH_2CHMeN(CH_2CO_2H)_2$

pen H_2 α -penicillamine

Ph phenyl

phen 1,10-phenanthroline

phobb 1-n-propyl-2-α-hydroxylbenzylbenzimidazole

pip piperidine

pn 1,2-diaminopropane

Prⁱ isopropyl Prⁿ n-propyl py pyridine

qH 8-hydroxyquinoline

Rida H_2 RN(CH_2CO_2H)₂, (R = Me, Et, Bz) sma H_2 N-(salicylidene)-2-mercaptoaniline

THF tetrahydrofuran

tol toluene

triphos bis(2-diphenylphosphinoethyl)phenylphosphine 3,5-Bu^thbdacH₂ N, N'-bis(3,5-di-t-butyl-2-hydroxybenzyl)-cis-1,2-di-

aminocyclohexane

5-X-saeH₂ N-(5-X-salicylidene)-2-aminoethanol 5-X-sapH₂ N-(5-X-salicylidene)-2-aminophenol

A. INTRODUCTION

The chemistry of the Group 6 * metals chromium, molybdenum, and tungsten is exceedingly versatile [1-7]. Ten oxidation states, $VI(d^0)$ to $-III(d^9)$ are known, and there is a tendency in the higher oxidation states (II-VI) for condensation to occur giving polynuclear species such as the polyoxometallates [6]. The organometallic chemistry [3] of the lower oxidation states is particularly well developed. In addition to the intrinsic interest of such intriguingly complex chemistry, a further stimulus arises from the use of the metals in technologies such as steelmaking and electroplating and in catalyst systems employed by the petrochemical industry. The biological role of these metals (especially that of molybdenum [7] in the nitrogenase and other enzyme systems) is also an area of intense interest.

One incentive for development of the nuclear magnetic resonance (NMR) spectroscopy of the Group 6 metals is the lack of a direct spectroscopic probe for diamagnetic metal sites to complement the role of electron spin resonance as a direct probe for paramagnetic centers. The development of an increasing accessibility to X-ray absorption spectroscopy [8] and the structural information available from the associated fine structure (EXAFS) is another aspect of this quest for a direct spectroscopic probe.

(i) History

Certain aspects of the NMR properties of the Group 6 metals have been reviewed [9–14], and a convenient starting point for the present detailed review is the article by Kidd and Goodfellow [9], which covered the literature to 1976. At that time, only 183 W of the four magnetic nuclei 53 Cr, 95 Mo, 97 Mo and 183 W (Table 1) had attracted any attention, because of the relatively high sensitivity of 1 H–{ 183 W}, 19 F–{ 183 W} and 31 P–{ 183 W} double-resonance and 1 H–{ 183 W, 31 P} triple-resonance experiments. The lack of interest in direct observation of the four Group 6 nuclei was because they are among the least sensitive of NMR nuclei. The reasons for this low sensitivity include:

(a) Low receptivities. In general terms, signal intensity (receptivity, D) is proportional to $\gamma^3 NI(I+1)$, where γ is the magnetogyric ratio, N the natural abundance of the isotope and I the nuclear spin quantum number. The low receptivities relative to ${}^1H(D^P)$ and ${}^{13}C(D^C)$ listed in Table 1 are a consequence of the low absolute magnitudes of γ (1.1–1.8 × 10⁷ rad T⁻¹ s⁻¹

^{*} This group notation is in accord with recent action by the IUPAC and ACS nomenclature committees.

TABLE 1
Nuclear properties ^a

Nucleus	Spin I. ħ	Natural abundance N, atom %	Magnetic moment μ , μ_N	Magnetogyric ratio γ , 10^7 rad T^{-1} s ⁻¹
⁵³ Cr	3/2	9.55	-0.6113	-1.5120
⁹⁵ Mo	5/2	15.72	- 1.081 °	-1.750 °
⁹⁷ Mo ¹⁸³ W	5/2 1/2	9.46 14.40	-1.104 0.2025	-1.787 1.120

^a Data from R.K. Harris, Nuclear Magnetic Resonance, Spectroscopy, Pitman, London, 1983, pp. 230–233. ^b Resonance frequency corrected to the field strength at which the protons of tetramethylsilane resonate at exactly 100 MHz. ^c Ref. 41. ^d R.T.C. Brownlee, M.J.

compared with the range for known nuclei of $0.4-29 \times 10^7$ rad T⁻¹ s⁻¹) and with the low values of N (9–16 atom %).

- (b) Low resonance frequencies. Resonance frequencies are proportional to γ and so the reference standards [MO₄]²⁻ listed in Table 1 resonate in the low frequency range (4–7 MHz) in a magnetic field in which the protons of tetramethylsilane resonate at exactly 100 MHz. The fact that low receptivities and low frequencies normally go hand in hand provided little incentive for the early development of low-frequency multinuclear NMR probes.
- (c) Nuclear electric quadrupole moments. 53 Cr, 95 Mo and 97 Mo have I > 1/2 and possess nuclear quadrupole moments, Q, which can couple to the local electric field gradient, q, providing a mechanism of rapid relaxation. This leads to large linewidths and low resolution. The quadrupole relaxation mechanism normally dominates the relaxation processes of quadrupolar nuclei. For rapidly rotating molecules whose motion is isotropic with correlation time τ_c , the linewidth is given by eqn. (1) [15]

$$W_{1/2} = (\pi T_{2q})^{-1} = (\pi P_{1q})^{-1} = \frac{3\pi}{10} \left(\frac{(2I+3)}{I^2(2I-1)} \right) \left(\frac{e^2 q_{zz} Q}{h} \right)^2 \left(1 + \frac{\eta^2}{3} \right) \tau_c \tag{1}$$

where η is the asymmetry parameter for q and

$$\eta = (q_{yy} - q_{xx})/q_{zz} \tag{2}$$

Note that an increase in the electric field gradient q (due to lowering of

Quadrupole moment	NMR frequency b	Reference	Relative rece	ptivity
Q , 10^{-28} m ²	Ξ, MHz	sample	$\overline{D^{P}}$	D^{C}
-0.15(5) ^c	5.642510 ^d	2 M Na ₂ [CrO ₄] D ₂ O, apparent pH 11, 20°C	8.62×10^{-5}	0.489
-0.015(4) ^f	6.516926 ^g	D ₂ O, apparent pH 11, 20°C	5.14×10^{-4}	2.92
0.17(4) ^f 0	6.653692 ^d 4.166388 ^{d.h}	as for ⁹⁵ Mo 2 M Na ₂ [WO ₄] D ₂ O, apparent pH 11, 20°C	3.29×10^{-4} 1.06×10^{-5}	1.87 0.0599

O'Connor, unpublished observation. ^e The sign given in the reference of footnote a is in error. ^f M. Dubke, W. Jitschin, G. Meisel, and W.J. Childs, Phys. Lett. A, 65 (1978) 109. ^g Ref. 16. ^h Ref. 138.

symmetry: "quadrupolar broadening") or in τ_c ("correlation time broadening") both lead to an increase in linewidth.

(ii) Current status

Until recently these technical and theoretical difficulties limited NMR studies of Group 6 nuclei to NMR specialists and dissuaded most chemists from applying the technique to current research problems. The advent of commercially-available Fourier transform (FT) spectrometers equipped with superconducting magnets of moderately high field and multinuclear low-frequency probes has encouraged chemists to examine the insensitive Group 6 nuclei more closely. Rapid relaxation of the quadrupolar nuclei allows rapid data collection in the FT mode, permitting an improvement in signal intensity which can compensate partially for large linewidths. Practical experience for Group 6 [16] and other nuclei (e.g. ¹⁷O, ⁴³Ca) [17,26b] is leading to the development of tactics to improve sensitivity further (see Section C(vi)). The prospects for using commercially available multinuclear Fourier transform NMR spectrometers to probe the chemistry of Group 6 metals directly are summarized in the next paragraphs.

For 53 Cr (I=3/2) a combination of low receptivity and a quadrupole moment of intermediate magnitude (note the dependence of $W_{1/2}$ on Q^2 in eqn. 1) ensures that direct observation remains difficult except for sites of very high point symmetry (i.e. of low q). Section D reviews the limited NMR data for 53 Cr.

About 70% of the NMR results for Group 6 metals involve 95 Mo, and the great majority of such studies have appeared since 1980. This quadrupolar nucleus (I = 5/2) has the highest receptivity of the Group 6 nuclei and a reasonably small Q (Table 1). The resonance frequency is low, but higher than either 53 Cr or 183 W and is accessible by commercially-available low-frequency broadband probes (Section C). The dependence of $W_{1/2}$ on the components of q (eqn. 1) means that 95 Mo resonances can be narrow (0.3 Hz for $[\text{MoS}_4]^{2-}$ [19]) or broad (1900 Hz for $\text{Mo}_2(\text{O}_2\text{CBu}^n)_4$ [20]) depending upon the point symmetry of the site. The linewidths of a large number of compounds are sufficiently narrow (< 1000 Hz) for convenient measurement by current commercial instrumentation, and 95 Mo NMR data available to the authors through July 1984 for over 450 compounds are tabulated and discussed in Section E.

 97 Mo(I=5/2) has a similar receptivity and resonance frequency to 95 Mo, but $Q(^{97}$ Mo)/ $Q(^{95}$ Mo) = 11.4. Such a large difference between the quadrupole moments of two isotopes of one element with identical spin is exceptional [18] and arises from the fact that 95 Mo has an outer half-filled $d_{5/2}$ neutron shell, which makes no contribution to the permanent quadrupole moment. The addition of two neutrons to this shell to create 97 Mo results in a relatively large change in Q. The dependence of $W_{1/2}$ on Q^2 (eqn. 1) means that 97 Mo NMR linewidths are two orders of magnitude greater than those of corresponding 95 Mo resonances (Fig. 1), and therefore 95 Mo is usually the nucleus of choice for chemical studies. However, if the 97 Mo

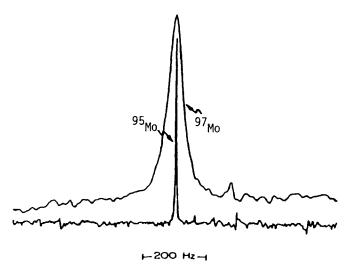


Fig. 1. 95 Mo and 97 Mo NMR spectra of Na₂[MoO₄] (1 M in 3 M NaCl, pH 12). From ref. 18, with permission.



Fig. 2. ¹⁸³W NMR spectrum of α -(Bu $_4^n$ N) $_5$ [TiPW $_{11}$ O $_{40}$] in MeCN/MeCN-d $_3$. Concentration. 0.23 M (11.4 g in 12.5 ml): accumulation time, 113.8 h (195000 scans with repetition time. 2.1 s). Adapted from ref. 151 with permission. See Fig. 27(b) for numbering system.

resonances are observable, the existence of two isotopes with different relaxation rates can allow convenient investigation of chemical exchange reactions [18].

Direct observation of 183 W (I=1/2) can be difficult and time-consuming because of long relaxation times (e.g. T_1 for W(CO)₆ is > 80 s). Figure 2 gives an indication of the commitment needed to record a multi-line spectrum of good quality for a polyoxotungstate. However, the narrow linewidths associated with 183 W NMR allow the resolution of 183 W- 183 W spin-spin coupling, which provides key structural information for these complex molecules in solution (Section F). The low frequency of 183 W is near the lower limit of most commercially available broadband probes.

B. REFERENCE STANDARDS

The NMR frequencies listed in Table 1 refer to 2M solutions of Na $_2$ [MO $_4$] (M = Cr, Mo, W) in D $_2$ O at an apparent pH of 11. All chemical shifts quoted in this review are referenced to these standards as 0 ppm. Chemical shifts previously referenced to a saturated solution of M(CO) $_6$ in THF or to neat WF $_6$ have been referenced to the above standards by using δ (95 Mo) for Mo(CO) $_6$ = -1856 ppm [50], δ (183 W) for W(CO) $_6$ = -3483 ppm and δ (183 W) for WF $_6$ = -1117 ppm. The standards of Table 1 are easy to observe, indefinitely stable and resonate towards the center of the known chemical shift scales. Compounds which resonate at a higher frequency than

POSITIVE	CHEMICAL SHIFT	NEGATIVE
DESHIELDED	SHIELDING	SHIELDED
DOWNFIELD		UPFIELD
HIGH FREQUENCY		LOW FREQUENCY

Fig. 3. NMR terminology.

the $[MO_4]^{2-}$ reference have positive chemical shifts, and the metal nucleus is deshielded relative to that of the reference complex. In this review chemical shift changes will be described exclusively as shielding changes. Thus a decrease in the metal chemical shift means that the shielding at the metal nucleus has increased. The relationships between chemical shift, shielding and the older notations (upfield/downfield and high frequency/low frequency) are illustrated in Fig. 3.

C. EXPERIMENTAL TECHNIQUES

Direct observation of the insensitive Group 6 nuclei by FT NMR requires carefully planned and executed experiments in order to obtain chemically-useful information in a reasonable amount of time. The quadrupolar Group 6 nuclei, 53 Cr, 95 Mo and 97 Mo, exhibit wide variations in chemical shift and linewidth. The relaxation times, T_{1q} and T_{2q} , for a quadrupolar nucleus of spin I are given by eqn. (1), and it can be seen that broad lines correspond to short relaxation times. Sections C(i)–(vi) discuss factors relevant to observation of the quadrupolar nuclei. The 183 W (I=1/2) nucleus normally has very sharp ($W_{1/2}$, 1 Hz) resonance signals and correspondingly long relaxation times. Section C(vii) highlights observation of 183 W NMR.

(i) Spectrometer properties

The requirements and characteristics of a modern multinuclear NMR spectrometer have recently been reviewed [21]. Briefly, such an instrument must be capable of generating a wide range of frequencies, selecting and amplifying a frequency, and detecting the absorption of the chosen frequency by the sample. The key component for flexible and sensitive performance by a multinuclear NMR spectrometer is the probe itself. Most standard multinuclear spectrometers now meet the above requirements.

(a) Probe pulse characteristics

The inherently low sensitivity of the Group 6 metals implies that the exciting pulse should be close to 90° in order to maximize the signal from

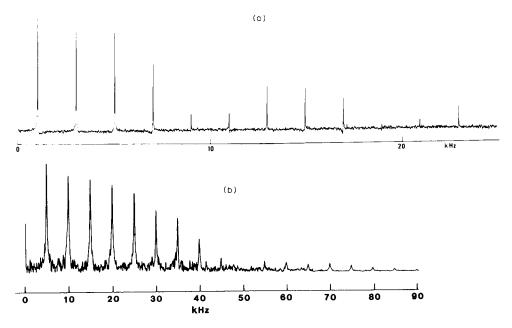


Fig. 4. Nodes in 95 Mo NMR power spectra: (a) 100 μ s sample pulse using a probe with a 125 μ s 90° pulse; (b) 20 μ s sample pulse using probe with a 31 μ s 90° pulse; note different scale.

the sample. However, the large chemical shift ranges of Group 6 metals can easily result in an absorption frequency for the sample which is 30 kHz or more away from the carrier frequency. It is recognized that there is a severe fall off in the power transmitted at frequencies outside the reciprocal of the pulse width from the carrier frequencies [22] and accurate intensities should thus be determined fairly near the carrier frequency. Clearly, increasing the pulse power and decreasing the 90° pulse width will increase the frequency range which can be sampled in a single experiment. Figures 4(a) and 4(b) illustrate the fall off in transmitted power for two probes with vastly different 90° pulses.

The pulse characteristics of commercially-available broadband probes have improved rapidly in recent years. Early broadband probes with variable capacitors had 90° pulses as long as 125 μ s [23]! In addition the 90° pulse increased with decreasing frequency. Contemporary digitally-selected broadband probes have 90° pulses as short as 35–40 μ s, and the pulses are nearly constant over the entire frequency range of the probe [21,24].

(b) Acoustic ringing and probe ringing

The electromagnetic generation of ultrasonic waves in metallic materials leads to a spurious signal known as "acoustic ringing" which is coherent with the exciting pulse [21,25]. Accumulation of this spurious signal in the

free induction decay (FID) can completely obliterate the signals from the sample, especially those of low concentrations requiring extended accumulation. Acoustic ringing is most severe under conditions of high magnetic field, high pulse power and low exciting frequencies (20 MHz and below), and is highly dependent upon the materials used to construct the probe, especially the probe body. Aluminum, which is commonly used in probe construction, shows one of the largest acoustic ringing responses of any metal, and therefore is a poor material to use for low frequency probes. Lead is one of the most effective metals for reducing acoustic ringing [25].

The ringing of the electronic circuitry of a sensitive probe (high probe Q factor) also contributes to the total spurious signal which is coherent with the pulse. For the remainder of this review acoustic ringing and the ringing of the probe circuitry will be collectively called "probe ringing".

Probe ringing appears as a sharp peak (Fig. 5(a)) at the beginning of the FID and is transformed to a broad peak (rolling baseline) (Fig. 5(b)) unless special precautions are taken. A rolling baseline makes it especially difficult to detect broad resonances, and consequently probe ringing is the limiting factor in observing broad signals at low concentration [26].

A convenient compound for evaluating the performance of an NMR spectrometer for ⁹⁵Mo NMR (Figs. 4 and 5) is MoO₂(ONC₅H₁₀)₂. This compound is easily synthesized [27] and is soluble in a variety of organic solvents. The linewidth (160 Hz in HCONMe₂) is more representative of low-symmetry complexes than [MoO₄]²⁻, but is still sufficiently small to enable good signal-to-noise data to be acquired in a few minutes.

(ii) Observation of narrow signals

According to eqn. 1, a linewidth of 30 Hz corresponds to a relaxation time of 11 ms. When using the JEOL FX-200 spectrometer a 90° pulse with a spectral width of 10 kHz is used to acquire 4K data points, resulting in an acquisition time of 205 ms. This results in a digital resolution of 5 Hz and hence defines the line position with reasonable accuracy. A preacquisition delay (dead time) of 750 μ s is sufficient to allow for acoustic ringing to decay, and the base line is very flat even for long accumulation on dilute solutions. Signal loss over this first 750 μ s is insignificant for narrow signals. In general, observation of ⁹⁵Mo resonances of this linewidth is relatively easy.

(iii) Observation of broad signals

A linewidth of 1000 Hz corresponds to a relaxation time (T_{2q}) of 318 μ s. With a preacquisition delay of 700 μ s only 11% of the signal remains to

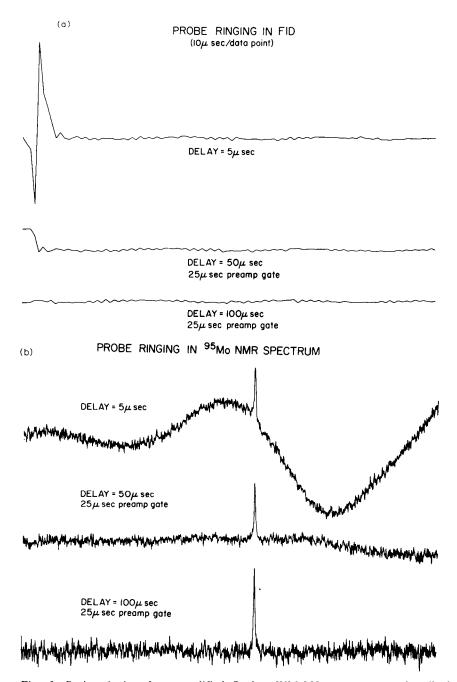


Fig. 5. Probe ringing from modified Bruker WM-250 spectrometer described in text, $MoO_2(ONC_5H_{10})_2$ in CH_2Cl_2 : (a) FID, 10 $\mu s/data$ point, pre-acquisition delays of 5, 50, 100 μs ; (b) transformed spectra from (a).

detect. Thus, broad line species are hard to observe, both because a broad signal results in low amplitude and because the fast relaxation rate makes the signal difficult to distinguish from probe ringing and its resultant rolling baseline. Consequently, a minimum preacquisition delay consistent with an acceptable baseline is needed, and the data must be acquired at the fastest possible rate. For example, if the preacquisition delay can be reduced to 100 μ s (Fig. 5), 73% of the signal will remain. In a typical experiment, a 20–30 μ s pulse with a 50 kHz spectral width is digitized into 4K data points to give a resolution of 24 Hz. Clearly, the observation of broad lines is also facilitated by a short 90° pulse which permits a large frequency range (50 kHz) to be sampled in a single experiment with a tip angle close to 90° (Section C(i), Fig. 4). It is our experience that dilute samples of molecules having broad lines are difficult to observe.

(iv) Chemical shifts

As is the case for all nuclei where a single line spectrum is produced, extreme care must be taken to check that the signal is not folded. For quadrature detection, repeating the spectrum with a different spectral width is necessary. A relatively long preacquisition delay can result in phasing problems when two or more peaks are present, and care must be taken to phase each peak separately in order to determine accurate chemical shifts.

The actual chemical shifts are measured by comparing the absolute frequency of the unknown sample with the absolute frequency of the external standard. The frequency difference is then converted to ppm from the standard frequency. Positive chemical shifts are "downfield" and correspond to shifts to higher frequency (Fig. 3).

Normal experimental procedure is to lock and shim the spectrometer on the deuterium resonance of the standard reference, before running all other samples unlocked, without altering the field or shim controls. However, when very long accumulations (> 24 h) are necessary, deuterated solvents or an internal capillary tube containing D_2O are used to maintain the lock signal. The errors associated with measured chemical shifts are ± 1 ppm for linewidths less than 200 Hz; ± 3 ppm for linewidths in the range 200 to 500 Hz; and ± 8 ppm for linewidths greater than 500 Hz.

(v) Linewidths

Exponential broadening is usually employed to improve the signal-to-noise ratio, and it is normally necessary to correct the measured half width for exponential broadening. The error in measuring linewidths is ± 5 Hz for linewidths less than 100 Hz; ± 20 Hz for linewidths between 100 and 400 Hz; and ± 60 Hz for linewidths in excess of 400 Hz.

(vi) Methods of improving sensitivity

It is evident that the observation of dilute samples with broad lines is difficult. A number of methods can be used to increase the possibility of observing such signals.

(a) Increasing the number of NMR-active nuclei in the sample

This can be achieved by increasing the concentration of the sample in solution, by increasing N (the fraction of NMR-active nuclei) through isotopic enrichment, or by increasing the size of the sample. Increasing the sample size requires a larger diameter probe. However, larger probes generally have longer 90° pulses. Thus, a typical exciting pulse (20–30 μ s) will produce a smaller tip angle (lower sensitivity) which partially negates the increased volume of a larger probe. For 95 Mo the net sensitivity for a 20–30 μ s exciting pulse using a standard 10 mm broadband probe is often better than for a standard 15 mm broadband probe, and the 10 mm probe requires only about half as much sample [23,24,28].

(b) Decreasing the molecular correlation time (τ_c)

Equation 1 shows that the relaxation time, and hence the linewidth, is related to the molecular correlation time (τ_c). By assuming a spherical solute molecule in a medium of viscosity η' , the rotational correlation time τ_c is given by eqn. 3

$$\tau_{\rm c} = \eta' V f / k T \tag{3}$$

where f is a microviscosity factor (0.16 for liquids) and V is the volume of the solute molecule. It is evident [16,17] that either lowering the viscosity of the solvent (Fig. 6), or measuring the sample at a higher temperature, will reduce the molecular correlation time and thereby decrease the spectral half width $(W_{1/2})$ of the signal.

(c) Increasing the sensitivity of the spectrometer

High resolution superconducting Fourier transform NMR spectrometers are primarily designed for studies of sensitive or commonly-studied nuclei with I=1/2, e.g. ¹H and ¹³C, rather than for low-frequency quadrupolar nuclei such as ⁹⁵Mo. The sensitivity of commercial NMR spectrometers such as the Bruker WM-250 for ⁹⁵Mo can be enhanced by several modifications and additions.

A fixed-frequency 10 mm probe specifically tuned for ⁹⁵Mo (16.3 MHz) has a somewhat shorter 90° pulse than a digitally selected broadband probe and can accept more power without arcing [24]. Fixed-frequency probes also seem less prone to ringing. The ringing is further reduced by shielding the probe with lead rather than with aluminum.

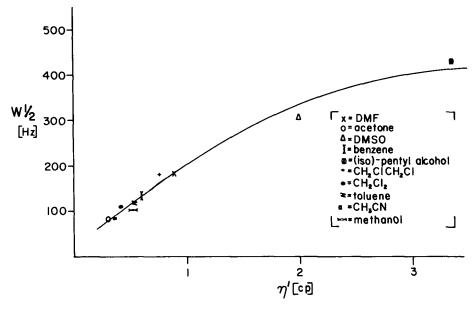


Fig. 6. Dependence of linewidth $(W_{1/2})$ on solvent viscosity (η') for $Mo(NO)_2(acac)_2$. Adapted from ref. 28, with permission.

The materials and circuitry of the probe are not the only source of ringing in the spectrometer. Ringing can be further decreased by inserting a fixed-frequency duplexer and preamplifier between the probe and the broadband preamplifier [29]. The arrangement allows the preacquisition delay to be reduced from 200 to 100 μ s with no loss of spectral quality. For a 1000 Hz line this will increase the sensitivity by 60%.

The output of low-frequency power from a broadband spectrometer is often low and can be contaminated with overtones and other frequencies [24]. If the transmitter output is passed through a narrow-band linear amplifier then the quality of the low-frequency power is improved, and the 90° pulse is reduced from 35 to 26 μ s [30]. This changes the tip angle for an exciting pulse of 20 μ s from 51° to 69°, which in turn increases the overall sensitivity by about 20%, provided that the increased power does not significantly increase the ringing (Section C(i)(b)).

The spectra in Figs. 5(a) and 5(b) were obtained on a modified Bruker WM-250 system using a Bruker fixed-frequency 10 mm 95 Mo probe (16.3 MHz) with lead shielding. A Doty Scientific duplexer and preamplifier with a 16 MHz frequency center was inserted between the probe and the Bruker broadband preamplifier. The transmitter output was amplified with a Heathkit SB-201 (1 kW) linear amplifier, with input attenuated to give a 26 μ s 90° pulse [30].

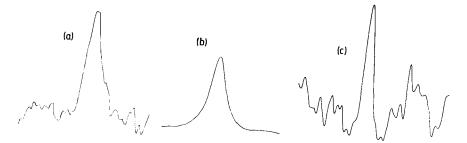


Fig. 7. 95 Mo NMR spectra. (a) [Mo] = 1 M; 1.36×10^6 transients; pre-acquisition delay 800 μ s; FX200 multilow probe. (b) [Mo] = 1 M; 1×10^4 transients; pre-acquisition delay 100 μ s; transverse probe. (c) [Mo] = 5×10^{-3} M; 9.6×10^6 transients; pre-acquisition delay 350 μ s; transverse probe. Reproduced from ref. 20, with permission.

(d) Using a transverse probe to increase sensitivity

In superconducting magnets, the sample tube axis is parallel to the principal magnetic field axis and this leads to inefficient transmitter/receiver coil design. This problem is overcome by using a probe in which the sample tube is aligned horizontally and the transmitter coil is wound around the sample tube. A threefold increase in signal to noise over the normal probe configuration is expected [31] for equivalent sample volumes. An inconvenience of the transverse probe is that it must be removed from the magnet each time a sample is changed.

A 95 Mo transverse probe constructed from copper wire has been used recently [20]. Figure 7 provides an example of the improved sensitivity of this new probe for $Mo_2(O_2CBu^n)_4$ in tetrahydrofuran ($W_{1/2}$, ca. 1500 Hz). Part of the increased sensitivity of the probe results from the transverse design. However, substantial sensitivity enhancement was realized because the decreased acoustic ringing (Section C(i)-(iii)) of the new probe (which was shielded with lead rather than aluminum or copper) enabled the preacquisition delay to be reduced. With this probe a preacquisition delay of 350 μ s for a JEOL FX-200 spectrometer provided flat base lines after 10^7 transients, permitting convenient detection of solutions of [Mo] of 0.01 M with linewidths greater than 1500 Hz. A reduction in the preacquisition delay from 800 to 350 μ s for a signal of $W_{1/2}$ of 1000 Hz represents a sensitivity enhancement of four, which provides an overall twelve-fold increase in sensitivity for this experiment with this transverse probe.

(e) Using multiple pulse sequences to reduce probe ringing

Since probe ringing is coherent with the exciting pulse (Section C(i)(b)) several multiple pulse sequences have been designed to subtract the ringing

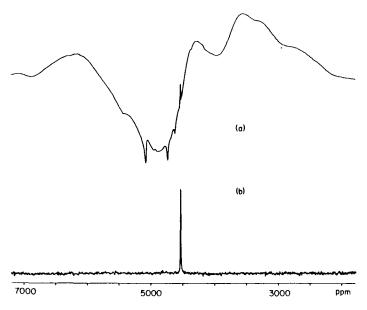


Fig. 8. ⁹⁹Ru spectrum of $[Ru(bpy)_3]^{2+}$: (a) normal acquisition with 5 μ s pre-acquisition delay; (b) acquisition with multiple pulse sequence described in ref. 21. Reproduced from ref. 21, with permission.

signal from the accumulating FID [21]. Spectacular sensitivity enhancements with a preacquisition delay of only 5 μ s have been achieved for systems in which relatively sharp lines are pulsed near the carrier frequency [21] (Fig. 8). However, the multiple pulse technique does not necessarily make it easier to detect broad signals or signals which are far from the carrier frequency. Several 180° pulses are used in the multiple pulse sequence. The duration of these pulses and the fall off of transmitted power away from the exciting frequency (Fig. 4) become critical to the success of the method. A probe with a 90° pulse of 20 μ s or less is probably necessary if this technique is to be generally useful for obtaining ⁹⁵Mo NMR signals from new compounds or from solutions containing several different molybdenum centers with diverse chemical shifts.

(f) Conclusions

There is an urgent need for the development of high power (90° pulse < 20 μ s), large volume (> 10 mm i.d.), low-frequency probes with satisfactory probe ringing characteristics. Such probes, together with the development of suitable pulse sequence techniques, will facilitate examination of low-frequency NMR nuclei such as 53 Cr and 95 Mo.

Direct observation can be very time-consuming (Fig. 2), but is being increasingly utilized (Section F). A valuable compilation of 183 W chemical shifts and spin-spin coupling constants has been obtained by McFarlane et al. [32,33] utilizing indirect heteronuclear $^{1}H-\{^{183}W\}$, $^{19}F-\{^{183}W\}$, $^{13}C-\{^{183}W\}$ double resonance and, in certain cases, $^{1}H-\{^{183}W,\ ^{31}P\}$ triple resonance. Such methods can provide chemical shifts in a few minutes provided additional decoupling channels are available to the spectrometer, but are restricted to species in which ^{183}W is coupled to a nucleus of high receptivity. Another approach is to take advantage of coupling to a second nucleus to enhance the ^{183}W signal by *J*-polarization transfer between the coupled spins, making use of the INEPT pulse sequence train [34].

The shiftless relaxation agent $Cr(acac)_3$ has been used to shorten the relaxation time, T_1 , and allow faster acquisition of data. The ¹⁸³W resonances were not broadened under the conditions employed [35].

D. CHROMIUM-53 NMR

Resonances for only two compounds [36–39] have been reported with that of $Cr(CO)_6$ ($W_{1/2}$, 17 Hz) [37] being shielded by 1795 ppm relative to $[CrO_4]^{2-}$ ($W_{1/2}$, 11 Hz).

The $[CrO_4]^{2-}$ resonance was first reported [36] in 1969 when the pH-dependence of its linewidth was followed. The signal broadens upon acidification due to exchange with the generated $[Cr_2O_7]^{2-}$. The chemical shift shows a concentration dependence (increased shielding with increased concentration) which is itself cation dependent: Na⁺ < K⁺ < Rb⁺ < NH₄⁺ < Cs⁺ [37]. The magnitude is ca. -1 ppm molal⁻¹ for Na⁺ and ca. -20 ppm molal⁻¹ for Cs⁺.

Poorly-resolved satellite peaks are seen [39] at the base of the central 53 Cr resonance in aqueous solutions of $[CrO_4]^{2-}$ enriched to 35 atom % in 17 O (I=5/2). Computer analysis yields $J(^{53}Cr-^{17}O)=10\pm 2\,$ Hz. A linear dependence of $J(M-^{17}O)$ upon the atomic number of M was noted for the series $[VO_4]^{3-}$, $[CrO_4]^{2-}$ and $[MnO_4]^{-}$.

Relaxation times have been measured [38] in aqueous solutions of $K_2[CrO_4]$ (0.5-3.0 molal). A slight increase in T_1 (determined by the inversion-recovery method) occurred as the concentration decreased and extrapolation to zero concentration gave $T_1 = 55 \pm 5$ ms. The T_1 values at the lower concentrations were similar in magnitude to the T_2 values determined from the linewidths which suggests (eqn. 1) that the quadrupole relaxation mechanism determines the observed linewidths. The magnitudes of q and η for $[CrO_4]^{2-1}$ and $Cr(CO)_6$ will be small [40] because of the high

point symmetries of these molecules and so the observed linewidths (11 and 17 Hz, respectively [37]) are a function of a substantial quadrupole moment Q [41]. There is an uncertainty of at least a factor of four in the reported magnitudes of Q (Table 1) [41]. However, use of eqn. (1) to calculate $W_{1/2}(^{53}\text{Cr})/W_{1/2}(^{95}\text{Mo})$ suggests that the linewidths of ^{53}Cr resonances will be between two and three orders of magnitude greater than the equivalent ^{95}Mo resonances, which can themselves be very broad (Section E). This point, augmented by the low receptivity, highlights the problem of direct detection of ^{53}Cr resonances with currently available instrumentation.

E. MOLYBDENUM-95 AND -97 NMR

Prior to 1975, measurements of 95,97 Mo NMR concentrated on the determination [42-46] of μ , Q and the Knight shift by observation of the metal or of aqueous molybdate, although 95,97 Mo resonances were used to study electronic interactions in cobalt-molybdenum alloys [47] and were detected in solid Na₂[MoO₄] [48]. Study of chemical phenomena in solution commenced in 1975 when Vold and Vold [18] nicely exploited the different relaxation times of the 95 Mo and 97 Mo nuclei in [MoO₄]²⁻ to study the protonation and condensation of that ion as a function of pH. In 1976, as part of a series of papers [19,39,49-53], Lutz and co-workers [19,50] started to define a chemical shift scale by examination of some systems of high symmetry $(Mo^{0}(CO)_{6}, [Mo^{IV}(CN)_{8}]^{4-}$ and $[Mo^{VI}O_{4-n}S_{n}]^{2-}$ (n = 0-4)) for which quadrupolar line-broadening was expected to be minimal. In 1980, the potential of 95 Mo NMR for study of organometallic systems was demonstrated [54], and this area has developed rapidly. Many areas of complex polyoxo and cluster chemistry of molybdenum feature metal sites of low symmetry, and their 95 Mo NMR properties are of considerable interest. The many active research areas in molybdenum chemistry and the role of molybdenum in enzymes [7] have further stimulated the rapid development of ⁹⁵Mo NMR spectroscopy in the past five years.

For convenience the ⁹⁵Mo NMR data are tabulated and discussed by oxidation state. Within a given oxidation state complexes with similar chemical or structural features are grouped together to illustrate the effects of systematic changes on the ⁹⁵Mo NMR spectra. The ⁹⁵Mo chemical shift scale covers a range of 7000 ppm and is schematically represented in Fig. 9. It is apparent that the ⁹⁵Mo chemical shift cannot be used to distinguish, a priori, between mononuclear Mo(0), Mo(II) and Mo(IV) species. However, the ⁹⁵Mo chemical shift is highly sensitive to structural and electronic variations within a series of closely-related mononuclear compounds. For example, molybdenum(VI) complexes show large increases in the chemical

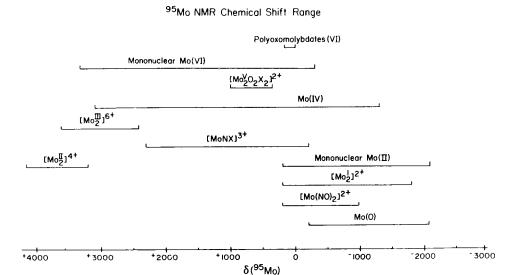


Fig. 9. 95 Mo NMR chemical shift range.

shift when an oxo group is replaced by a sulfido group. (Sections E(i)(b), E(i)(d)). Sequential coordination of Cu^{I} units to MoS_{4}^{2-} results in stepwise decreases in the chemical shift (Section E(i)(c)). Polynuclear species exhibiting strong intermetallic bonding (e.g. $[Mo_{2}^{II}]^{4+}$ species [16,20], Section E(v)(e)) can resonate in ranges far removed from those observed for mononuclear species in the same oxidation state (Fig. 9).

⁹⁵Mo NMR has also been used to follow reactions (Section E(i)(d)), to detect diastereomeric metal centers (Section E(v)(c)) and to identify compounds in reaction mixtures before separation and purification of products [33,112]. Spin-spin coupling (Section E(xi)) to other nuclei (especially ³¹P) often enables solution stereochemistries to be determined unambiguously.

The ⁹⁵Mo NMR data for the compounds reviewed in Section E were relatively easy to assemble because almost every report mentioned molybdenum NMR in the title. In addition a substantial fraction of the data are from the authors' laboratories. Subsequent reviewers of ⁹⁵Mo NMR will face a more difficult task. The technique is rapidly becoming another routine tool used by chemists doing research on molybdenum, and the ⁹⁵Mo NMR parameters for new compounds may be partially obscured among data from other measurements used for characterization and identification [84,87,127]. The authors hope that the tabulation and discussion of the existing ⁹⁵Mo NMR data in Section E will further encourage those studying molybdenum chemistry to consider applying ⁹⁵Mo NMR to their own research problems.

(i) Molybdenum(VI) compounds

(a) Molybdate and the polyoxomolybdates

The relaxation rates of molybdate solutions in water are independent of pH in the range 9-12 [18] and the $[MoO_4]^{2-}$ ion can be examined free of complicating chemical effects because the rate of oxygen exchange is slow (0.02-0.05 s⁻¹) [55] and protonation and condensation processes are unimportant. The 95 Mo and 97 Mo relaxation times of 840 ± 20 and 6.5 ± 0.2 ms translate (eqn. 1) to half-widths of 0.38 and 49 Hz respectively for the particular samples (1 M Na₂[MoO₄], 3 M NaCl) examined (see Table 28). Directly-observed 95 Mo NMR linewidths are greater than 0.5 Hz (Fig. 1, Table 2) and accurate estimates are restricted by magnetic field inhomogeneity. The much broader 97 Mo linewidths ($^{97}Q/^{95}Q = 11.4$) can be determined accurately and use of eqn. 1 and an estimate of τ_c provides electric quadrupole coupling constants $e^2q_{zz}^{97}Q/h$ and $e^2q_{zz}^{95}Q/h$, of 3.3 and 0.29 MHz, respectively [40]. These are small, but significantly greater than the value of zero expected for idealised tetrahedral site symmetry ($q_{-}=0$). The symmetry of the solvation shell is apparently lower than tetrahedral as it seems that ion-pair formation is ruled out by the insensitivity of the linewidths to salt concentration [40].

However, the chemical shift does exhibit a concentration dependence which is itself cation dependent. The Li^+ and NH_4^+ salts show increasing shielding (ca. -2.4 ppm molal⁻¹) with increasing concentration compared with a deshielding (ca. +1 ppm molal⁻¹) for the Na^+ and K^+ analogues

TABLE 2			
$[MoO_{4-n}X_n]^{2-}$	X = S, Se;	n = 0-4)	complexes a

Anion	Solvent b			
	Water		•	MeCN ^c
	δ, ppm	$W_{1/2}(^{95}\text{Mo}), \text{Hz}$	$W_{1/2}(^{97}\text{Mo}), \text{Hz}$	δ, ppm
$\overline{[\text{MoO}_4]^{2-}}$	0	0.5 ^d (0.38 ^d)	35 (48.9 f)	e
$[MoO_3S]^{2-}$	497	10 ^d	e	e
$[MoO_2S_2]^{2-}$	1067	2.8 ^d	85	964
$[MoOS_3]^{2-}$	1654	0.7 ^d	35	1587
$[MoS_4]^{2-}$	2259	0.3 ^d	25	2207
$[MoO_3Se]^{2-}$	656	c		e
$[MoO_2Se_2]^{2-}$	1450	c		1335
$[MoOSe_3]^{2-}$	2272	c		2171
$[MoSe_4]^{2-}$	3145	c		3339

^a Data from refs. 19, 53, 56, 57. ^b Nominal conc., 0.1-0.5 M. ^c Linewidth <10 Hz. ^d Spinning sample. ^e Not observed. ^f Calculated from the data of ref. 18 for a sample of Na₂MoO₄ (1 M) in aqueous NaCl (3 M).

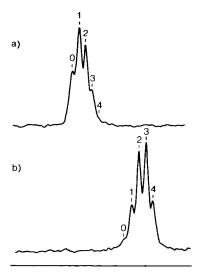


Fig. 10. ⁹⁵Mo NMR spectra of basic Na₂[MoO₄]: (a) 1 molal solution in H₂O (relative atom %: $^{16}O:^{17}O:^{18}O = 61.4:10.9:27.7$); (b) 0.87 molal solution in D₂O (relative atom %: $^{16}O:^{18}O = 27.5:72.5$). The indices n mark absorption due to $[Mo^{16}O_{4-n}{}^{18}O_n]^{2}$. Taken from ref. 51, with permission.

[11,49]. This contrasts with $[CrO_4]^{2-}$ where increasing shielding is observed uniformly (Section D) [37].

The sensitivity of the 95 Mo chemical shift to the fine details of its environment is highlighted further by intramolecular isotope effects. Fine structure due to individual isotopomers $[\text{Mo}^{16}\text{O}_{4-n}^{18}\text{O}_{n}]^{2-}$ (n=0-4) are resolved (Fig. 10) in Na₂[MoO₄] solutions of varying oxygen isotope content [51]. The isotope effect is -0.25 ± 0.01 ppm for replacement of ^{16}O by ^{18}O and lineshape analysis indicates a statistical distribution of oxygen isotopes within 5 min, consistent with the rate of oxygen exchange [55]. The difference in chemical shift of the two patterns in Fig. 10 is due to a solvent hydrogen isotope effect of about -1.9 ppm when D₂O substitutes for H₂O, and a very minor concentration shift [39].

Below pH 9, the linewidths of molybdate solutions increase as chemical exchange processes affect the relaxation rate [18]. Above pH 7.7, protonation of molybdate dominates the chemistry (eqn. 4).

$$H^+ + [MoO_4]^{2-} \rightleftharpoons [MoO_4H]^- \log K = 3.5 - 3.9 [18]$$
 (4)

Application of two-site exchange equations allows determination of the rate constant for protonation, $k_{\rm H} = 4.8 \times 10^9~{\rm l~mol^{-1}~s^{-1}}$. This number is in excellent agreement with that determined by ultrasonic relaxation. The availability of two isotopes with intrinsically different relaxation rates allows

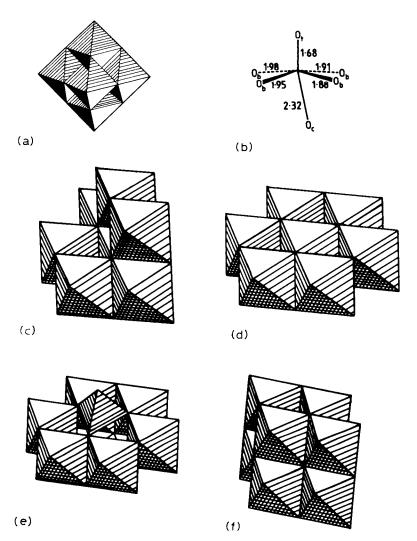


Fig. 11. Idealized condensed polyhedron models of polyoxomolybdate structures observed in the solid state. (a) $[Mo_6O_{19}]^2$; (b) Bond lengths observed for each molybdenum site in (a); (c) $[Mo_7O_{24}]^{6-}$; (d) $[XMo_6O_{24}]^{n-}$; (e) α - $[Mo_8O_{26}]^{4-}$; (f) β - $[Mo_8O_{26}]^{4-}$. Adapted from ref. 60, with permission.

separation of the kinetic parameters at a single temperature and removes the need for temperature or magnetic field variation. The relaxation time, T_1 , for the protonated form drops to 0.2–0.3 ms from 840 ms for $[\text{MoO}_4]^{2-}$ and reflects the increased field gradient at ^{95}Mo .

As molybdate solutions are acidified below pH 7.7, the molybdate signal broadens and a second, broad resonance, assigned to $[Mo_7O_{24}]^{6-}$ (Fig. 11(c) depicts the solid state structure) appears at about pH 6.5 [49,59,60]. These

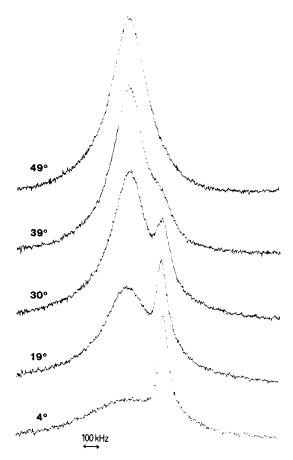


Fig. 12. Temperature variation of the 95 Mo NMR spectrum of Na₆[Mo₇O₂₄]·4 H₂O (96.47 atom % 95 Mo) in H₂O ([Mo] = 2.8 M; pH 6.1; no. of pulses, 4–5000; pulse repetition time, 0.86 s; spectral bandwidth, 2500 Hz). Reproduced from ref. 60, with permission.

general assignments are reasonable, as available equilibrium data indicate that for [Mo] = 10^{-3} M, the predominant species present will be [MoO₄]²⁻ and its mono- and di-protonated forms and [Mo₇O₂₄]⁶⁻ and its mono- and tri-protonated forms [58]. A 0.4 M solution of Na₆[Mo₇O₂₄]·4 H₂O (96.47 atom % ⁹⁵Mo) in H₂O (pH 6.1) also exhibits the two resonances at lower temperatures (Fig. 12) [60]. These coalesce as the temperature is increased progressively to 49°C and it is apparent that the Mo- and Mo₇-based species are exchanging rapidly on the ⁹⁵Mo NMR time-scale. The ¹⁷O NMR spectrum of [Mo₇O₂₄]⁶⁻ also shows reversible, temperature-dependent changes and at 90°C, only a very broad water resonance is observed [61]. The detailed nature of the rapid exchange reactions seen in the ⁹⁵Mo and ¹⁷O NMR spectra cannot be discerned from the present limited data.

TABLE 3
Polyoxomolybdates ^a

Compound	[Mo] (M)	Solvent	Tempera- ture (°C)	δ, (ppm)	Linewidth (Hz)
$\frac{(Bu_4^n N)_2[Mo_2O_7]}{(Bu_4^n N)_2[Mo_2O_7]}$	0.15	MeCN	20	-7	16
$(Bu_4^nN)_2[Mo_6O_{19}]$	0.1	MeCN	20	122	88
	1.4	HCONMe ₂	20	125	240
$(Bu_4^nN)_3[VMo_5O_{19}]$	0.2	MeCN	20	140	230
$Na_6[Mo_7O_{24}]\cdot 4H_2O$	2.8 ^a	H_2O (pH 6.1)	20	-1.2	ca. 120
				34	ca. 500
$Na_{3}[AlH_{6}Mo_{6}O_{24}]\cdot 4H_{2}O$	0.9	H_2O (pH 5.5)	50	-18	290
$Na_6[TeMo_6O_{24}] \cdot 2 H_2O$	2.0	H_2O (pH 5.5)	50	10	200
$Na_5[IMo_6O_{24}] \cdot 3 H_2O$	2.5	H_2O (pH 5.5)	50	-11	370
α -(Bu ₄ ⁿ N) ₄ [Mo ₈ O ₂₆]	$0.15^{-b.c}$	MeCN	20	16	23
β -(Bu ₄ ⁿ N) ₃ K[Mo ₈ O ₂₆]·2 H ₂ O	0.05 b.c	MeCN	20	19	240
				109	ca. 220
α -(Bu ₄ ⁿ N) ₄ [SiMo ₁₂ O ₄₀]	0.2	MeCN	50	27	520
α -(Bu ₄ ⁿ N) ₃ [PMo ₁₂ O ₄₀]	0.2	MeCN	50	25	720
$[H_8CeMo_{12}O_{42}] \cdot 18 H_2O$	2.5	H_2O (pH 5.5)	20	2	460

^a Data from ref. 60. ^b Enriched to 96.47 atom % ⁹⁵Mo. ^c Enriched to 21.7€ atom % ¹⁷O.

A preliminary survey is available for a range of polyoxomolybdates(VI) (Table 3) which contain one, two or three terminal oxo ligands [60,62]. The chemical shifts fall into the range presently defined for mononuclear $[Mo^{VI}O]^{4+}$, cis- $[Mo^{VI}O_2]^{2+}$ and fac- $[Mo^{VI}O_3]$ species with peripheral ligands possessing O or N donor atoms (Fig. 9; see Tables 5–8). This might be expected for polynuclear species which feature minimal interaction between $Mo^{VI}(d^0)$ sites.

In contrast to the polyoxotungstates (Section F) where the number of 183 W resonances observed is usually that expected for the static structures, 95 Mo NMR does not provide direct structural information. Linewidths generally exceed 100 Hz for six-coordinate sites but can be narrow (ca. 20 Hz at 20°C) for four-coordinate sites. Important influences include low site symmetries (high q_{zz} , eqn. 1), relatively high molecular radii (high τ_c , eqns. 1 and 3) and chemical exchange (Fig. 12). For example, both $[Mo_6O_{19}]^{2-}$ and the Keggin anions such as α - $[PMo_{12}O_{40}]^{3-}$ exhibit high point group symmetries (O_h and T_d respectively: Figs. 11(a) and 27(a)) in the solid state [6] and solution [61], but the site symmetry of the equivalent molybdenum atoms is low (Fig. 11(b)).

An interesting case is that of α -[Mo₈O₂₆]⁴⁻ (Fig. 11(e)) which exhibits a single ⁹⁵Mo resonance (Fig. 13(a)). The simplest interpretation is that this narrow signal is due to the two tetrahedral capping Mo atoms (site symmetry

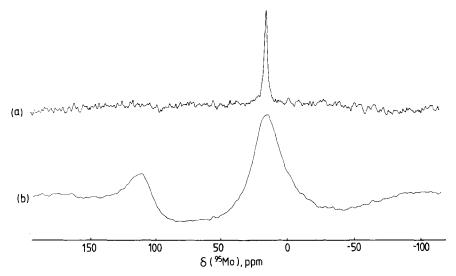


Fig. 13. ⁹⁵Mo NMR spectra of samples (atom %: ⁹⁵Mo 96.47; ¹⁷O 21.72) in MeCN at 20°C (pulse repetition time, 0.55 s; spectral bandwidth, 4000 Hz). (a) α -(Bu₄ⁿN)₄[Mo₈O₂₆] ([Mo] = 0.15 M; number of pulses, 1000); (b) β -(Bu₄ⁿN)₄[Mo₈O₂₆] ([Mo] = 0.05 M; number of pulses, 6700). Reproduced from ref. 60, with permission.

 C_{3v} ; note the narrow linewidth of $[{\rm Mo_2O_7}]^{2-}$ (Table 3)) and that the resonances of the ring Mo atoms are too broad to be detected under the present conditions. Note that the six-ring Mo atoms of $[{\rm XMo_6O_{24}}]^{n-}$ (Fig. 11(d)) exhibit linewidths greater than 200 Hz, even at 50°C (Table 3). Alternatively, all eight Mo atoms could be involved in a fast exchange process. In contrast the β -isomer of $[{\rm Mo_8O_{26}}]^{4-}$ features three inequivalent Mo sites in the ratio 2:1:1 (Fig. 11(f)), but two broad resonances are present in the $^{95}{\rm Mo}$ spectrum (Fig. 13(b)).

Low temperature ¹⁷O NMR spectra of $[Mo_7O_{24}]^{6-}$, and α - and β - $[Mo_8O_{26}]^{4-}$ exhibit the number of resonances expected from the solid state structures (Fig. 11), but chemical exchange processes are observed in both aqueous and nonaqueous solutions and especially at elevated temperatures. It is apparent that a systematic integrated study of ⁹⁵Mo and ¹⁷O NMR properties of polyoxomolybdates is warranted as they may have markedly different time scales. In particular, low temperature ¹⁷O NMR can be used to confirm the integrity of sample solutions. For example, an early communication reported that α - and β - $[Mo_8O_{26}]^{4-}$ exhibited the same single narrow ⁹⁵Mo signal in MeCN [62]. This error resulted from examination of a sample of β -isomer containing < 10 mol % of α -isomer. The very narrow α -signal (Fig. 13) has a chemical shift close to that of a broad β -signal and dominated the observed spectrum. Contributing difficulties included use of a

less sensitive spectrometer, the presence of "rolling baseline" due to probe ringing and the low solubility ([Mo] = 0.05 M) of β -(Bu $_4^n$ N) $_3$ K[Mo $_8$ O $_{26}$] in MeCN. The problem of detecting broad signals in the presence of contaminating narrow ones is highlighted by this case.

(b) Molybdate derivatives

Data [19,53,56,57] for the thio- and selenido-molybdates(VI), $[MoO_{4-n}X_n]^{2-}$ (n=0-4, X=S, Se) in H₂O and MeCN solutions are listed in Table 2 and depicted schematically in Fig. 14. These solutions are reactive and interconversion of species is facile in the presence of protons [63,64]. Consequently, assignments are based upon the internal consistency of the results and those for $[WO_{4-n}S_n]^{2-}$ complexes (Section F). For example, the anions exhibit uniformly narrow (< 10 Hz) linewidths, a similar solvent dependence of the chemical shift, and a systematic decrease in shielding with successive substitution of O atoms by S or Se atoms. The decrease is 497–604 ppm per S atom and 656–873 ppm per Se atom in aqueous solution. Similar behavior is found in $[PO_{4-n}S_n]^{3-}$ [65].

The isotopomers $[Mo(^{32}S)_4]^{2-}$ and $[Mo(^{32}S)_3^{34}S]^{2-}$ can be resolved in naturally-abundant $[MoS_4]^{2-}$ (cf. $[MoO_4]^{2-}$, Fig. 10) [52]. The cation dependence of the chemical shift is slight, but the solvent dependence of the chemical shift of $[MoS_4]^{2-}$ is pronounced, being over 70 ppm in the solvents examined [56]. The chemical basis of this solvent dependence is not understood, but it may be related to expansion of the coordination sphere promoted by protonation of the sulfido ligands in protic solvents.

The ⁹⁷Mo NMR linewidths of the thiomolybdates are between one and two orders of magnitude greater than those of the corresponding ⁹⁵Mo

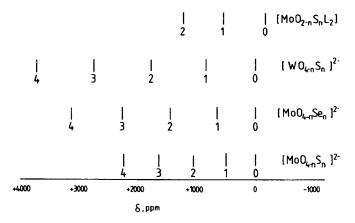


Fig. 14. Chemical shift scale for thio and selenido species ($LH = R_2NOH$). Reproduced from ref. 64, with permission.

resonances [53], consistent with quadrupolar relaxation (Section E(xii) and eqn. 1: $W_{1/2} \propto Q^2$).

(c) Copper-molybdenum-sulfur clusters

An important facet of the chemistry of the thiomolybdate anions is their ligand properties [63,64]. They bond to a wide variety of metal centers via the sulfur atoms while maintaining the physical integrity of the $[MoO_{4-n}S_n]^{2-}$ moiety. A series of Cu–Mo–S clusters has been examined [56,66,67] by ⁹⁵Mo NMR (Table 4), and the data for the simpler bi- and trinuclear derivatives of $[MoS_4]^{2-}$ demonstrate that equilibrium (5) lies essentially to the left.

$$2[XCuS_2MoS_2]^{2-} \rightleftharpoons [XCuS_2MoS_2CuX]^{2-} + [MoS_4]^{2-} (X = CN, SPh)$$
 (5) All resonances for $[(XCu)_nMoS_4]^{2-}$ complexes are shielded relative to $[MoS_4]^{2-}$ and the ⁹⁵Mo chemical shift decreases by 200–400 ppm upon addition of each Cu^IX (X = Cl, Br, I, SPh, CN) unit to the $[MoS_4]^{2-}$ core [67]. Smaller variations in the molybdenum chemical shift result from changing the nature of the X ligand attached to the Cu atom: SPh < I < Br < Cl ~ CN [67]. Substitution of Cu^I by Ag^I in $[(NCCu)MoS_4]^{2-}$ deshields the molybdenum nucleus by 57 ppm [56].

The data in Table 4 also permit several direct comparisons among $[(XCu)_nMoS_4]^{2-}$, $[(XCu)_nMoOS_3]^{2-}$ and $[(XCu)MoO_2S_2]^{2-}$ (n = 0, 1, 2, 3)

TABLE 4
Thiomolybdate(VI) cluster compounds ^a

Compound	Solvent	δ	Linewidth	Ref.
		(ppm)	(Hz)	
${[(NCCu)MoS_4]^{2-}}$	MeCN	1864	30	56, 66
$[(NCAg)MoS_4]^{2-}$	MeCN	1921	15	56
$[(NCCu)MoOS_3]^{2-}$	MeCN	1199	25	56
$[(PhSCu)MoS_4]^{2-}$	MeCN	1903	50	66
$[(PhSCu)MoO_2S_2]^{2-}$	HCONMe ₂	611	70	67
$[(NCCu)_2MoS_4]^{2-}$	MeCN	1616	220	56, 66
$[(PhSCu)_2MoS_4]^{2-}$	MeCN	1700	630	66
$[(PhSCu)_2MoOS_3]^{2-}$	HCONMe ₂	892	100	67
$[(ClCu)_2MoS_4]^{2-}$	HCONMe ₂	1618	250	67
$[(BrCu)_2MoS_4]^{2-}$	HCONMe ₂	1632	600	67
$[(ClCu)_3MoS_4]^{2-}$	HCONMe ₂	1234	200	67
$[(ClCu)_3MoOS_3]^{2-}$	CH ₂ Cl ₂	474	20	67
$[(BrCu)_3MoS_4]^{2-}$	HCONMe ₂	1272	250	67
$[(ICu)_3MoS_4]^{2-}$	MeCN	1282	170	67
$[(ClCu)_4MoS_4]^{2-}$	HCONMe,	886	1400	67
$[(BrCu)_4MoS_4]^{2-}$	$HCONMe_2^2$	910	1400	67

^a 20−25°C.

complexes. The pair $[(NCCu)MoS_4]^{2-}$ (1) and $[(NCCu)MoOS_3]^{2-}$ (2) shows an increased shielding of 665 ppm for the oxo-containing anion, [56] similar to the 605 ppm difference between the free $[MoS_4]^{2-}$ and $[MoOS_3]^{2-}$ anions (Table 2). For $[(PhSCu)MoS_4]^{2-}$ (1) and $[(PhSCu)MoO_2S_2]^{2-}$ (3), the oxo-containing anion is 1290 ppm more shielded [67], compared with a difference of 1190 ppm between the free $[MoS_4]^{2-}$ and $[MoO_2S_2]^{2-}$ anions (Table 2). Complexes of structural types 1, 2, and 3 display similar linewidths for a given X group, and are all < 100 Hz.

The $[(XCu)_n MoS_4]^{2-}$ anions with n=2, 3 undergo a structural change when the molybdenum core changes from $[MoS_4]^{2-}$ to $[MoOS_3]^{2-}$. For the pair $[(PhSCu)_2 MoS_4]^{2-}$ (4) and $[(PhSCu)_2 MoOS_3]^{2-}$ (5), the shielding of the molybdenum nucleus is 808 ppm larger in 5 [67] (Table 4).

The linewidth of 5 (100 Hz) is smaller than that of 4 (250 Hz) even though 4 exhibits a higher Mo site symmetry.

The anions $[(ClCu)_3MoS_4]^{2-}$ (6) and $[(ClCu)_3MoOS_3]^{2-}$ (7) show similar chemical shift differences to 4 and 5, with compound 7 being 760 ppm more shielded than 6.

An examination of Table 4 suggests that other factors beside quadrupolar and correlation time broadening (eqn. 1) can contribute to the linewidths. For example, in MeCN an order of magnitude increase in linewidth is observed by lowering the symmetry from T_d in $[MoS_4]^{2-}$ (< 1 Hz) to C_{2v} in $[(NCAg)MoS_4]^{2-}$ (15 Hz) and this parallels that observed (Table 2) for a similar progression from $[MoS_4]^{2-}$ (0.3 Hz) to $[MoO_2S_2]^{2-}$ (2.8 Hz) in H_2O . However, correlation broadening will make some contribution for the larger $[(NCAg)MoS_4]^{2-}$ anion and the presence of unresolved $^{95}Mo^{-107,109}Ag$ (I =

1/2) coupling should not be discounted. An increase in the ⁹⁵Mo relaxation rate caused by coupling to a rapidly relaxing neighboring quadrupolar nucleus ($^{63.65}$ Cu, I=3/2) is a plausible explanation of the increased linewidth of [(NCCu)MoS₄]²⁻ (30 Hz) over that of the Ag analogue. The larger linewidth for [(PhSCu)MoS₄]²⁻ (50 Hz) is consistent with correlation time broadening due to the bulky phenyl group.

For $[(XCu)_2MoS_4]^{2-}$ complexes the linewidths range from 200–600 Hz. The importance of correlation time broadening is illustrated by the decrease of the linewidth of $[(NCCu)_2MoS_4]^{2-}$ in HCONMe₂ from 900 to 140 Hz as the temperature is increased from 20 to $100^{\circ}C$ [56]. The $[(XCu)_3MoS_4]^{2-}$ complexes (6) show linewidths of ~ 200 Hz. Conversion of 6 to 7 decreases the linewidth substantially [67]. The presence of trigonal symmetry (as in 7) often leads to relatively narrow lines.

(d) Hydroxylamidomolybdenum(VI) compounds

The dialkyl(hydroxylamido) complexes, Mo^{VI}O₂(ONR₂)₂ (8), first isolated by Wieghardt [27], are another group of complexes in which sulfido and selenido ligands can be systematically substituted for a terminal oxoligand. In one sense, these six-coordinate species might be regarded as pseudo-tetrahedral due to the small bite angle of the R₂NO ligand [27,68,69] but their geometry is more accurately described as skew trapezoid bipyramidal [81,82]. The magnitude of deshielding upon replacement of an oxoligand is somewhat larger [68,69,71] than for the simple molybdates, being about 700 ppm per S and 1000 ppm per Se atom added (Table 5). The stepwise conversion of MoO₂(ONR₂)₂ to MoOS(ONR₂)₂ and MoS₂(ONR₂)₂ by the action of the sulfiding reagent (Me₃Si)₂S can be followed conveniently by ⁹⁵Mo NMR (Fig. 15, [71]). ⁹⁵Mo NMR can also be used to follow the slow interconversion of these compounds in the presence of protons [72].

Another feature of the systematic replacement of oxo groups by sulfido groups in $MoO_2(ONR_2)_2$ complexes is the decrease in linewidth that accompanies incorporation of sulfur. For $MoO_{2-n}S_n(ONC_5H_{10})_2$ the linewidths (Hz) are 160(n=0), 100(n=1) and 70(n=2) [71]. This suggests that in these complexes the asymmetry parameter (eqn. 2) decreases as sulfur replaces oxygen. Alternatively, the more polar Mo-O bonds may interact more strongly with the solvent, resulting in correlation time broadening for the oxo complex.

(e) cis-Dioxomolybdenum(VI) compounds

The 95 Mo NMR spectra of many six-coordinate complexes containing the cis-[MoVIO2]²⁺ unit have been examined (Tables 5 and 6) because such units are thought to occur at the molybdenum sites of certain enzymes [78,79]. The point group symmetry of such species can be no higher than C_2 . The cis-stereochemistry of the oxo ligands is imposed electronically [4], but the detailed molecular structure is determined by non-bonded repulsions between donor atoms [80–82]. Consequently, 95 Mo chemical shifts in this stereochemically-flexible system are sensitive to apparently minor ligand variations. For example, the chemical shifts of $MoO_2(SCMe_2CMe_2NHR)_2$ (R = H, Me) differ by 129 ppm [23]. Few simple correlations are apparent in Tables 5 and 6. The total chemical shift range covers about 900 ppm, and the shifts of two general coordination spheres appear to be reasonably well-defined:

 $[MoO_2(thiolate-S)_2N_2]:400 \rightarrow 700 \text{ ppm}$

 $[MoO_2(O, N)_4] : -230 \rightarrow +100 \,ppm$

TABLE 5 Hydroxylamidomolybdenum(VI) compounds

Compound	Solvent	Chemical shift (ppm)	Linewidth (Hz)	Ref.
MoO ₂ (ONHMe) ₂	HCONMe ₂	- 219	200	71
MoO ₂ (ONHMe) ₂	MeCN	-230	65	68
$MoO_2(ONHBu^t)_2$	HCONMe ₂	-218	150	71
$MoO_2(ONMe_2)_2$	HCONMe ₂	- 165	120	71
$MoO_2(ONEt_2)_2$	$HCONMe_2$	-169	160	68, 71
$MoOS(ONEt_2)_2$	HCONMe ₂	544	140	71
$MoOS(ONEt_2)_2$	CH ₂ Cl ₂	541	70	68
$MoOSe(ONEt_2)_2$	$HCONMe_2$	865	120	71
$MoS_2(ONEt_2)_2$	HCONMe ₂	1234	100	68, 71
$MoO_2(ONC_5H_{10})_2$	HCONMe,	-184	160	71
$MoO_2(ONC_5H_{10})_2$	CDCl ₃	<i>−</i> 177	a	69
$MoOS(ONC_5H_{10})_2$	HCONMe ₂	531	100	71
$MoOS(ONC_5H_{10})_2$	CDCl ₃	537	a	69
$MoOSe(ONC_5H_{10})_2$	HCONMe,	855	70	71
$MoS_2(ONC_5H_{10})_2$	HCONMe ₂	1219	70	71
$MoS_2(ONC_5H_{10})_2$	CDCl ₃	1229	a	69
$MoO_2(ONBz_2)_2$	HCONMe ₂	- 161	260	68, 71
MoOS(ONBz ₂) ₂	CHCl ₃	565	340	68
$MoS_2(ONBz_2)_2$	CHCl ₃	1282	530	68

^a Linewidth not reported.

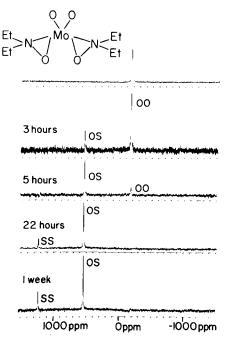


Fig. 15. Conversion of $MoO_2(ONEt_2)_2$ (0.6 M in $CHCl_3$) to $MoOS(ONEt_2)_2$ and $MoS_2(ONEt_2)_2$ by incubation with $(Me_3Si)_2S$ (2 equivalents).

Replacement of an O or N donor atom of a ligand by a thiolate sulfur leads to a deshielding of 200–400 ppm; the most clear-cut comparison is between $MoO_2(sap)(HCONMe_2)$ (34 ppm) and $MoO_2(sma)(HCONMe_2)$ (231 ppm) [23]. On the other hand, thioether sulfur appears [73] to be more shielding than amine nitrogen, and so ^{95}Mo shielding in these systems increases in the order RS $^-$ < RO $^-$, R $_3N$ < R $_2S$.

The chemical shifts of $MoO_2Br\{HB(Me_2pz)_3\}$ (129 ppm) and $MoO_2Cl\{HB(Me_2pz)_3\}$ (85 ppm) [73] demonstrate that six-coordinate *cis*- $[MoO_2]^{2+}$ complexes show inverse halogen dependence of the chemical shift [11] (Section G(i)(c)).

Factors which contribute to the wide range of linewidths (24-1170 Hz) are also difficult to discern. Although quadrupolar broadening is the major factor, species with no formal symmetry (e.g. $MoO_2\{(SCH_2CH_2)_2NCH_2CH_2NMe_2\}$, 45 Hz) can have relatively narrow lines. The effects of correlation time broadening are apparent. The linewidths of $MoO_2(hbdae)$ derivatives in CH_2Cl_2 increase progressively from 50 to 220 Hz as the number of t-butyl substituents increases progressively from 0 to 4 [73]. For $MoO_2(S_2CNR_2)_2$ complexes the linewidth increases smoothly from 140 to 570 Hz in the expected order $R = Me < Et < Pr^n < Bu^n$ [30]. In addition, the

TABLE 6 cis-Dioxomolybdenum(VI) compounds ^a

	Ligalia dollol	Solvent	Chemical shift	Linewidth	Ref.
	atoms		(mdd)	(Hz)	
$(\text{Et}_4\text{N})_2[\text{MoO}_2(\text{NCS})_4]$	Z	Me ₂ CO	-155	330	73
$MoO_2(OMe)\{HB(Me_2pz)_3\}$	ON ₃	$CH_2^{-}CI_2$	-35	100	73
$MoO_2(3-Bu'hbdae)$	O_2N_2	$CH_{2}CI_{3}$	-19	120	73
$MoO_2(3,5-Bu^thbdae)$	$O_2^{-}N_2$	$CH_2^{-}CI_2^{-}$	-15	220	73
MoO ₂ (3,5-Buthbdac)	O_2N_2	$CH_2^-Cl_2^-$	-11	140	73
$MoO_2(NCS)\{HB(Me_2pz)_3\}$	Z [*]	$HCONMe_2$	-5	250	73
$MoO_2(acam)_2$	°5	HCONMe ₂	-4	160	23
$MoO_2(dpm)_2$	* 0	CH_2CI_2	-4	120	89
$MoO_2(hbdae)$	O_2N_2	CH_2CI_2	0	50	73
$MoO_2(acac)_2$	O_4	$HCONMe_2$	3	130	28, 68
$MoO_2(hbdab)$	N_2O_2	CH_2CI_2	7	100	89
$MoO_2(5-H-sae)(Me_2SO)$	Z.O O	Me_2SO	26	430	74
$MoO_2(5-Br-sae)(Me_2SO)$	O_3N	Me_2SO	29	470	74
$MoO_2(5-NO_2-sae)(Me_2SO)$	Z.O	Me_2SO	31	450	74
$MoO_2(5-NO_2-sap)(Me_2SO)$	Z.O	Me_2SO	31	160	74
$MoO_2(5-Cl-sae)(Me_2SO)$	Z.O	Me_2SO	32	200	74
$MoO_2(5-CH_3O-sae)(Me_2SO)$	N.O O	Me_2SO	34	098	74
$MoO_2(sap)(HCONMe_2)^b$	O_3N	HCONMe ₂	34	350	23
$MoO_2(sap)(Me_2SO)$	O_3N	Me_2SO	38	470	74
$MoO_2(5-Br-sap)(Me_2SO)$	Z	Me_2SO	39	1170	74
$MoO_2(5-Cl-sap)(Me_2SO)$	Z	Me_2SO	40	280	74
$MoO_2(5-CH_3O-sap)(Me_2SO)$	O_2N	Me_2SO	47	098	74

MoO_2q_2	O_2N_2	HCONMe ₂	58	100	23
$MoO_2Cl\{HB(Me_2pz)_3\}$	N_3C_1	$HCONMe_2$	85	400	73
$MoO_2Br\{HB(Me_2pz)_3\}$	N_3Br	CH_2CI_2	129	270	73
$MoO_2(S_2CNMe_2)_2$	S_4	CH_2CI_2	151	140	30
$MoO_2(S_2CNEt_2)_2$	S_4	CH_2Cl_2	176	280	23
$MoO_2(S_2CNPr_2^n)_2$	S_4	CH_2CI_2	173	430	30
$MoO_2(S_2CNBu_2^n)_2$	\$	CH_2CI_2	175	570	30
$MoO_2(sma)(HCONMe_2)$	O_2NS	$HCONMe_2$	231	360	23
$MoO_2(dttd)$	S_2	CH_2CI_2	409	99	73
$MoO_2(Mepen)_2$	N_2S_2	$HCONMe_2/Me_2SO$	131, 451 °	ਝ	75
$MoO_2(SCMe_2CMe_2NH_2)_2$	N_2S_2	CH_2CI_2	452	270	23
$MoO_2(mq)_2$	N_2S_2	$HCONMe_2$	460	145	89
$MoO_2(SCH_2CH_2NH_2)_2$	N_2S_2	Me ₂ SO	467	275	76
MoO ₂ (L-cysOEt) ₂	N_2S_2	$NCONMe_2$	469	ਰ	77
MoO ₂ (L-cysOMe) ₂	N_2S_2	HCONMe ₂	467, 495 °	פ	77
MoO ₂ (mae)	N_2S_2	$HCONMe_2$	491	200	23
$MoO_2(mab)$	N_2S_2	HCONMe ₂	499	550	73
$MoO_2(mpe)$	N_2S_2	HCONMe ₂	543	270	23
$MoO_2(SCMe_2CMe_2NHMe)_2$	$\mathbf{N_2S_2}$	CH_2Cl_2	581	320	23
, -	N_2S_2	MeCN	899	55	89
$MoO_2\{(SCH_2CH_2)_2NCH_2CH_2NMe_2\}$	N_2S_2	CH_2CI_2	604	45	23
		$HCONMe_2$	604	50	89
$MoO_2\{(-CH_2NEtCH_2CH_2S)_2\}$	N_2S_2	MeCN	629	9	89
$[MoO_2(phobb)]_2O$	υ	CH_2CI_2	47, 76	P	128

^a For ligand abbreviations, see pp. 171, 172 ^b Abbreviated as sip in ref. 23. ^c Separate resonances assigned to two diastereomeric molybdenum centers. ^d Linewidth not reported. ^c The binuclear complex contains a five-coordinate (O_2 , N)MoO₂ unit and a six-coordinate (O_3 , N)MoO₂ unit.

linewidth of the $MoO_2(acac)_2$ resonance in MeOH varies linearly from 73 Hz at 41°C to 270 Hz at -34°C [68].

Individual resonances for $MoO_2(L-cysOMe)_2$ in $HCONMe_2$ are resolved at 495 and 467 ppm and may be assigned a to the Δ and Λ diastereomers in relative concentrations of about 1:5 [77]. An approximate ΔG^+ value, 64 kJ mol⁻¹ can be estimated for their interconversion.

(f) Oxo, nitrido and imido complexes

Although the coodination chemistry of MoVI is dominated by the cis-[MoO₂]²⁺ unit, several compounds containing the [Mo^{VI}O]⁴⁺, [Mo^{VI}N]³⁺, and [Mo^{VI}(NPh)]⁴⁺ units have been examined by ⁹⁵Mo NMR (Table 7). Seven-coordinate [MoO]⁴⁺ complexes with the general formula $[MoO(S_2CNR_2)_3]BF_4$ and $MoOX_2(S_2CNR_2)_2$ (R = Me, Et, Prⁿ, Buⁿ; X = Cl⁻ or Br⁻; $X_2 = S_2^{2-}$) have chemical shifts ranging from 55 to 182 ppm with the dimethyldithiocarbamato complexes being more shielded than their dialkyl analogues [30]. For the MoOX₂(S₂CNR₂)₂ complexes, replacement of Cl by Br causes deshielding of the 95 Mo nucleus, i.e. this type of complex shows an inverse halogen dependence. The corresponding nitrido complexes, $MoN(S_2CNR_2)_3$ (R = Me, Et), exhibit ⁹⁵Mo NMR resonances at ca. -100 ppm, which are shielded in comparison with the monooxo complexes and also in comparison with the other [MoN]³⁺ complexes studied (MoNX₃, X = Cl, OBu^t ; $[MoNCl_4]^-$ and $[MoNCl_5]^{2-}$). The nitrido complexes cover a shift range of 1200 ppm. The phenylimido complex, chemical [Mo(NPh)(S₂CNEt₂)₃]BF₄, is even more shielded than the corresponding nitrido complex. Replacement of a dithiocarbamato ligand in [Mo-(NPh)(S₂CNEt₂)₃]BF₄ by two Cl⁻ or Br⁻ ligands deshields the ⁹⁵Mo nucleus, as also occurs for the corresponding monooxo complexes. These halide complexes exhibit an inverse halogen dependence. The novel carbyne compound Mo(CCMe₃)(CH₂CMe₃), has $\delta = 1404$ ppm, $W_{1/2} = 10$ Hz [102].

The $MoO_2(ONR_2)_2$ complexes (8, Section E(i)(d)) react with catechols to form seven-coordinate $[MoO]^{4+}$ complexes [83] with a general formula $MoO(ONR_2)_2(cat)$, with only N and O donor atoms. The ⁹⁵Mo resonances occur from -42 to +17 ppm (Table 7(a)) and are more shielded than the $[MoO(S_2CNR_2)_3]^+$ complexes [30] described above. The most shielded $[MoO]^{4+}$ complex known is $[MoO(O_2)(CN)_4]^{2-}$ with $\delta = -610$ ppm [84].

(g) fac-Trioxomolybdenum(VI) compounds

A few six-coordinate fac-MoO₃ complexes have been studied by 95 Mo NMR (Table 8). All feature one tertiary amine and two carboxylate ligands and resonate at 66 ± 4 ppm [59,68]. Interestingly, while [(MoO₃)₂(pdta)]⁴⁻ exhibits a single resonance at 22° C, two resonances are resolved [85] at higher temperatures and may be assigned to the inequivalent sites MoNCH₂₋

TABLE 7
Monooxo, nitrido and phenylimido Mo(VI) compounds

(a) Monooxo compounds	Solvent	Chemical shift (ppm)	Linewidth (Hz)	Ref.
[MoO(S ₂ CNMe) ₃]BF ₄	CH ₂ Cl ₂	55	20	30
$[MoO(S_2CNEt_2)_3]BF_4$	$CH_{3}Cl_{3}$	80	4()	30
MoOCl ₂ (S ₂ CNMe ₂) ₂	$CH_{2}Cl_{2}$	117	30	30
$MoOBr_2(S_2CNMe_2)_2$	CH_2Cl_2	163	20	30
$MoOCl_2(S_2CNEt_2)_2$	CH_2Cl_2	137	30	30
$MoOBr_2(S_2CNEt_2)_2$	CH_2Cl_2	182	30	30
$MoO(S_2)(S_2CNEt_2)_2$	CH_2Cl_2	139	50	30
$MoO(S_2)(S_2CNEt_2)_2$	CH_2Cl_2	148	70	30
$MoO(ONC_5H_{10})_2(cat)$	CHCl ₃	-5	300	83
$MoO(ONC_5H_{10})_2(4-Bu^t-cat)$	CHCl ₃	17	500	83
$MoO(ONC_5H_{10})_2(3.5-Bu^t-cat)$	CHCl ₃	-28	400	83
$MoO(ONC_5H_{10})_2(4-NO_2-cat)$	CHCl ₃	-40	450	83
$MoO(ONC_5H_{10})_2(Br_4\text{-cat})$	CHCl ₃	−42	450	83
$[MoO(O_2)(CN)_4]^{2-}$	CH_2Cl_2	-610	a	84
(b) Nitrido compounds	Solvent	δ	Linewidth	Ref.
		(ppm)	(Hz)	
MoNCl ₃	MeCN	952	80	30
(PPh ₄)[MoNCl ₄]	CH ₂ Cl ₂	1106	< 20	30
$(PPh_4)_2[MoNCl_5]$	CH_2Cl_2	395	50	30
MoN(OBu ^t) ₃	CH_2Cl_2	55	40	30
$MoN(S_2CNMe_2)_3$	CH_2Cl_2	-121	40	30
$MoN(S_2CNEt_2)_3$	CH_2Cl_2	-103	40	30
(c) Phenylimido compounds	Solvent	δ	Linewidth	Ref.
		(ppm)	(Hz)	
$[Mo(NPh)(S_2CNEt_2)_3]BF_4$	CH ₂ Cl ₂	- 294	450	30
$Mo(NPh)Cl_2(S_2CNEt_2)_2$	CH_2Cl_2	-254	480	30
$Mo(NPh)Br_2(S_2CNEt_2)_2$	CH_2Cl_2	-218	400	30

^a Linewidth not reported.

(68 ppm) and MoNCHMe (56 ppm). Aqueous (pH 6-7) solutions of MoO₃(H₂NCH₂CH₂NCH₂CH₂NH₂), [MoO₃(L-histidine)]⁻ and [MoO₃(L-aspartate)]²⁻ each feature [59,85] a broadened resonance close to 0 ppm, apparently characteristic of exchange between [MoO₄]²⁻ and the 1:1 complex.

(ii) Molybdenum(V) compounds

Mononuclear Mo(V) complexes have a d^1 electron configuration, are paramagnetic and not readily amenable to NMR measurements. Most of the Mo(V) systems examined to date by 95 Mo NMR are diamagnetic binuclear

TABLE 8 fac-Trioxomolybdenum(VI) complexes a.b

Complex	Ligand atoms	δ	Linewidth	Ref.	
		(ppm)	(Hz)		
[MoO ₃ (Meida)] ²	NO ₂	63	120	59	
$[(MoO_3)_2(edta)]^4$	NO_2	63	290	59, 68	
$[(MoO_3)_2(eedta)]^4$	NO_2	64	150	59	
$[(MoO_3)_2(egta)]^4$	NO_2	64	240	59	
$[MoO_3(Bzida)]^2$	NO_2	65	210	59	
$[MoO_3(ida)]^2$	NO_2	66	130	59, 68	
$[MoO_3(Etida)]^{2}$	NO_2	67	160	59, 68	
$[MoO_3(nta)]^3$	NO_2	67	160	59, 68	
$[(MoO_3)_2(pdta)]^{4-}(20^{\circ}C)$	NO_2	67	260	59, 85	
(95°C)	-	56, 68		85	
$[(MoO_3)_2(hpdta)]^{4}$	NO_2	70	400	59	
$[(MoO_3)_2(hedta)]^{3-}$	NO_2	76	500	59	

^a In H_2O , pH = 5.5–6.0. ^b For ligand abbreviations, see pp. 171, 172.

TABLE 9
Binuclear Mo(V) compounds ^a

Compound	Solvent	Chemical shift (ppm)	Linewidth (Hz)	T (°C)	Ref.
$[Mo_{1}O_{4}(H_{1}O)_{6}]^{2+}$	1-6 M MeSO ₃ H	533	500-670 h	20	16
2 4 2 107	,	542	260-390 b	50	16
	1-6 M HCl	535	450	20	16
		547	230-260 b	50	16
$Na_{,}[Mo_{,}O_{4}(edta)] \cdot H_{,}O$	H_2O (pH 5.5)	609	490	20	16
$Na_2[Mo_2O_2S_2(edta)] \cdot 2 H_2O$	H_2O (pH 5.0)	982	300	50	16
$Na_2[Mo_2O_4(cyst)_2] \cdot 5 H_2O$	H_2O (pH 5.2)	434	250	50	16
$Na_2[Mo_2O_4(pdta)]\cdot 4H_2O$	H_2O (pH 5.5)	635	200	70	16
	_	ca. 590			
$Na_2[Mo_2O_4(pen)_2]$	H_2O (pH 5.3)	431	360	20	85
$Na_{2}[Mo_{2}O_{4}(C_{2}O_{4})_{2}(H_{2}O)]\cdot 3H_{2}O$	$4 \text{ M H}_2\text{C}_2\text{O}_4$	533	300	20	86
syn-[Mo ₂ O ₄ ([9]aneN ₃)]I ₂	H,O	588	250	20	87
anti- $[Mo_2O_4([9]aneN_3)]I_2$	H ₂ O	342	250	20	87
anti- $[Mo_2O_4([12]aneN_3)_2](PF_6)_2$	MeCN	320	680		87
$(Et_4N)[Mo_2O_2(4-MeC_6H_4S)_6(OMe)]$	MeCN	718	157		88

^a For ligand abbreviations, see pp. 171, 172. ^b Increases with increasing acid concentration due to increasing viscosity of the medium.

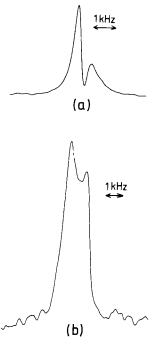


Fig. 16. 95 Mo NMR spectra of: (a) Na₂[Mo₂O₄(pdta)]·4 H₂O (0.5 M, pH 5.5, 70°C). The distorted line shape is due to a large phase variation across the spectrum due to a pre-acquisition delay time of 500 μ s imposed to avoid a rolling base-line; (b) Na₄[(Mo₃O₄)₂(pdta)₃]·14 H₂O (ca. 0.2 M; pH 5.5, 70°C). Reproduced from ref. 16, with permission.

complexes containing the syn-[(Mo^VO)₂(μ -X)₂]²⁺ (X = O, S) structural unit (Table 9). The chemical shift observed [16] for the Mo(V) aquo-ion in MeSO₃H and HCl is the same within experimental error and independent of acid concentration in the range 1–6 M. This suggests that [Mo₂O₄(H₂O)₆]²⁺ is being observed in both systems.

The complexes, $[Mo_2O_4(edta)_2]^{2-}$ and $[Mo_2O_4(pdta)_2]^{2-}$ exhibit one and two ⁹⁵Mo NMR resonances, respectively (Fig. 16(a)) at 70°C. The methyl group on the backbone of the pdta ligand removes the C_2 symmetry axis present in the edta complex and two geometric isomers are possible. A detailed comparison of ¹H, ¹³C and ⁹⁵Mo results allows assignment of the ⁹⁵Mo resonances to the inequivalent Mo-N-CHMe- and Mo-N-CH₂-sites of the so-called equatorial isomer of the *syn*-pdta compound [16]. A similar resolution was observed in the $[(Mo^{VI}O_3)_2(pdta)]^{4-}$ system (Section E(i)(g)).

The chemical shifts are again very sensitive to the electronic environment of the molybdenum atom. Note the large chemical shift difference of 246

ppm between the syn and anti isomers of $[Mo_2O_4L_2]I_2$ (9) [87,89], where L is 1,4,7-triazacyclononane. The anti isomer is more shielded even though its first electronic transition occurs at lower energy than that of the syn isomer. Clearly, the differences in $\Delta\epsilon$ for the first electronic transition cannot be the major factor in determining the chemical shift difference for this pair of complexes (see Section G(i)(b)).

(iii) Molybdenum(IV) compounds

The chemical shift scale for mononuclear Mo(IV) species is not well-defined (Table 10, also see Note Added in Proof and ref. 70). However, trinuclear systems based upon the $[Mo_3O_4]^{4+}$ structural unit 10 have been

TABLE 10
Molybdenum(IV) compounds ^a

Compound	Solvent	δ (ppm)	Line- width (Hz)	T (°C)	Ref.
$K_4[Mo(CN)_8]$	H ₂ O	-1309	80	RT	19
$K_4[MoO_2(CN)_4]$	H ₂ O (pH 9)	1452	360	20	85
$[Mo_3O_4(H_2O)_9]^{4+b}$	4 M p-MeC ₆ H ₄ SO ₃ H	1133	350	50	16
	4 M MeSO ₃ H	990	620	50	16
		539 °	350		16
	4 M HCl	1162	450	50	16
		1024	550		
		550 °	500		
$H_{2}[Mo_{3}O_{4}(C_{2}O_{4})_{3}(H_{2}O_{3})_{3}]$	sat. aq. H ₂ C ₂ O ₄	1044	520	20	16
$Na_4[(Mo_3O_4)_2(edta)_3] \cdot 14 H_2O$	D_2O	1083	1000	50	16
400 3 4720 734 2	<u>-</u>	608 د	500		
$Na_4[(Mo_3O_4),(pdta)_3]-14 H_5O$	H ₂ O (pH 5.5)	1103	1400	75	16
4th 3 472 F 731 2	_ `* /	1025			
$Na_2[Mo_3O_4(Meida)_3]\cdot 7 H_2O$	H ₂ O (pH 5.5)	1037	250	50	16

^a For ligand abbreviations, see pp. 171, 172. ^b Enriched to 96.7 atom % ⁹⁵Mo. ^c These resonances appear in aerobic solutions upon storage of samples in air.

studied in detail [16] (Table 10). Resonances were detected in the chemical shift range 990-1162 ppm for solutions of Mo(IV) generated in p-toluenesulfonic, methanesulfonic and hydrochloric acid media and for aqueous solutions of complexes which contain the [Mo₃O₄]⁴⁺ unit in the solid state. The narrowness of the observed range (172 ppm) indicated that the 95Mo nuclei are in similar molecular and electronic environments in all the species examined. When coupled with ¹⁸O transfer [90] and EXAFS [91] experiments, the results confirm that Mo(IV) solutions in acid media contain high proportions of [Mo₃O₄(H₂O)₉]⁴⁺ or simple complexes derived from it by substitution of water ligands. For example, two resonances attributable to [Mo₃O₄]⁴⁺ based clusters are observed in 4 M HCl solution and the simplest interpretation of the existing data is that two species are present which differ in the number of chloro ligands. It is also possible that resolution of inequivalent sites in a single species such as [Mo₃O₄(H₂O)₈Cl]³⁺ is occurring. This certainly seems to be the case in [(Mo₃O₄)₂(pdta)₃]⁴ where the two resonances (Fig. 16(b)) can be assigned to inequivalent Mo-N-CHMe and Mo-N-CH₂- sites. Although this Mo(IV) system is more complicated stereochemically than the Mo(VI) and Mo(V) pdta cases discussed previously (Sections E(i)(g) and E(ii)), a similar assignment is suggested.

(iv) Molybdenum(III) compounds

Mononuclear Mo(III) species have a d^3 electron configuration and are paramagnetic, but binuclear species featuring a metal-metal triple bond are diamagnetic and can be studied by 95 Mo NMR [92]. The complexes Mo₂L₆ (L = Me₂HCO⁻, Me₃CO⁻, Me₃CCH₂O⁻, Me₂N⁻, Me₃SiCH₂⁻) (Table 11) absorb between 2400 and 3700 ppm, and are among the most deshielded resonances known (Fig. 9). Only binuclear Mo(II) species with associated metal-metal quadrupole bonds have more positive chemical shifts. The shielding of the 95 Mo nucleus increases in the order alkyl < tertiary alkoxo < primary and secondary alkoxo < dialkylamido. The linewidths vary from 120 Hz to 630 Hz and are generally narrower than those of the Mo(II) dimers discussed in Section E(v)(e).

TABLE 1	1		
Binuclear	Mo(III)	compounds	а

Compound	Solvent	Chemical shift	Linewidth
		(ppm)	(Hz)
$Mo_2(NMe_2)_6$	hexane	2420	630
	toluene	2430	1320
$Mo_2(OCHMe_2)_6$	toluene	2444	350
$Mo_2(OCH_2CMe_3)_6$	toluene	2447	600
$Mo_2(OCMe_3)_6$	toluene	2645	120
Mo ₂ (CH ₂ SiMe ₃) ₆	toluene	3624	500

^a Data from ref. 92.

(v) Molybdenum(II) compounds

The wide variety of Mo(II) complexes which have been investigated by 95 Mo NMR includes organometallic compounds with carbonyl and cyclopentadienyl ligands, isocyanide complexes, diastereometric complexes, and metal-metal quadruply-bonded binuclear species. Monometric Mo(II) complexes resonate from +200 to -2100 ppm, the more shielded portion of the molybdenum chemical shift range. In contrast, the Mo(II) dimers are the most deshielded complexes known, with chemical shifts around 4000 ppm (Fig. 9).

(a) Tricarbonyl compounds

Table 12 presents 95 Mo NMR data for complexes with the general formula CpMo(CO) $_3$ X, where X is a monodentate ligand. All of the compounds have linewidths < 200 Hz [54,93,94]. The chemical shifts show that the shielding of the [CpMo(CO) $_3$] $^+$ core increases in the order $-\text{CMe=CMe}_2 < \text{Cl} < \text{Br} < \text{I} < -\text{CH}_2\text{C}_6\text{H}_4\text{R} < \text{Me} < \text{H} < \text{SnMe}_3$. Thus these complexes exhibit normal halogen dependence. Electron-donating ligands like SnMe $_3$ cause shielding of the molybdenum nucleus, whereas electron-withdrawing ligands such as $-\text{CMe=CMe}_2$ cause deshielding. It is interesting that the hydride ligand is more shielding than Me and the halogens. No $^{95}\text{Mo-}^{1}\text{H}$ coupling was reported for CpMo(CO) $_3\text{H}$ even though the linewidth was only 25 Hz.

A good example of the dependence of the chemical shift on ligand substituents is shown in Table 13. For CpMo(CO)₃(CH₂C₆H₄R) complexes a chemical shift range of 40 ppm is observed upon variation of the R group [94]. The ⁹⁵Mo NMR chemical shift in these complexes is particularly sensitive to distant substituents (up to six intervening bonds). The chemical shift change is such that electron-donating substituents on the aryl ring cause shielding of the ⁹⁵Mo nucleus (Fig. 17). The data in Table 13 also illustrate

TABLE 12
Tricarbonylmolybdenum(II) compounds

Compound	Solvent	Chemical shift (ppm)	Line- width (Hz)	Ref.
CpMo(CO) ₃ (CMe=CMe ₂)	CDCl ₃	- 607	110	93
CpMo(CO) ₃ Cl	CDCl ₃	-836	120	93
CpMo(CO) ₃ Br	CDCl ₃	−956	115	93
CpMo(CO) ₃ I	CDCl ₃	-1248	105	93
$CpMo(CO)_3(CH_2C_6H_4R)$	CHCl ₃	-1551 to	a	54, 94
	MeCN	– 1599		
CpMo(CO) ₃ Me	C_6D_6	-1736	40	93
[CpMo(CO) ₃] ₂ Hg	CDCl ₃	-1834	160	93
CpMo(CO) ₃ H	C_6D_6	-2047	25	93
CpMo(CO) ₃ SnMe ₃	CDCl ₃	-2072	60	93
[(Me3[9]aneN3)Mo(CO)3Br]PF6	MeCN	197	130	95, 113
$Cp(CO)Mo(\mu-SMe)_3Mo(CO)_3$	CDCl ₃	-560	300	93

^a See Table 13.

TABLE 13
CpMo(CO)₃(CH₂C₆H₄R) compounds ^a

R	Chemical shift	Linewidth	
	(ppm)	(Hz)	
Н	-1599 b	30	
	- 1577	60	
4-Me	-1583	50	
4-OMe	-1587	70	
4-F	- 1577	50	
4-C1	-1566	50	
4-CF ₃	-1551	60	
3-Me	- 1579	60	
3-OMe	-1574	70	
3-F	-1562	40	
3-Cl	-1559	50	
3-CF ₃	−1579 ^b	40	
•	- 1555	60	
2-Me	-1572	50	
2-OMe	-1573	50	
2-F	-1560	40	
2,4,6-Me ₃	- 1599	60	

^a In CHCl₃, data from ref. 94. ^b In MeCN, data from ref. 54.

the importance of making substituent studies under identical and controlled conditions because the solvent shifts for R = H and $R = 3\text{-}CF_3$ in MeCN (> 20 ppm) are larger than most substituent effects.

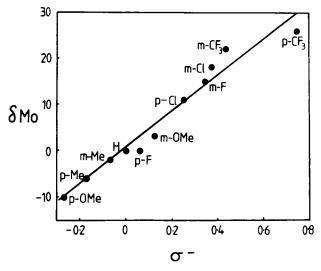


Fig. 17. Variation of $\delta(^{95}\text{Mo})$ with Hammett σ^- constants for complexes CpMo(CO)₃(CH₂C₆H₄R). Reproduced from ref. 94, with permission.

The seven-coordinate Mo(II) complex $[(Me_3[9]aneN_3)Mo(CO)_3Br]PF_6$, with a chemical shift of 197 ppm, is the most deshielded mononuclear Mo(II) complex known. Comparison of the chemical shifts of CpMo(CO)₃Br (-956 ppm) and $[(Me_3[9]aneN_3)Mo(CO)_3Br]^+$ (197 ppm) shows that the

TABLE 14 Dicarbonylmolybdenum(II) compounds

Compound	Solvent	Chemical shift (ppm)	Line- width (Hz)	Ref.
$\frac{[\{HB(Me_2Pz)_3\}Mo(CO)_2]_2S}{[\{HB(Me_2Pz)_3\}Mo(CO)_2]_2S}$	CH ₂ Cl ₂	+ 314	600	96
$\{CpMo(CO)_2(SMe)\}_2$	CDCl ₃	-158, -213	120	93
$[CpMo(CO)_2(N,N^*)]PF_6^a$ (14)	Me ₂ CO	-128 to -168	a	97
$CpMo(CO)_2(N',N^*)^a$ (16)	Me_2CO	-293 to -310	a	97
$CpMo(CO)_2(C,N^*)^a$ (15)	Me_2CO	-383 to -396	a	97
$CpMo(CO)_2(S_2PEt_2)$	CDCl ₃	-340	170	93
-	C_6D_6	- 341	180	93
$CpMo(CO)_2(S_2CSEt)$	CDCl ₃	-422	130	93
$CpMo(CO)_2(S_2CNEt_2)$	CDCl ₃	- 544	170	93
$CpMo(CO)_2(S_2COEt)$	CDCl ₃	- 559	100	93
$CpMo(CO)_2\{C(CF_3)=C(CF_3)C(O)SMe\}$	CDCl ₃	-845	110	93
$CpMo(CO)\{C(O)C(CF_3)=C(CF_3)C(O)SMe\}$	$(CD_3)_2CO$	-883	185	93

^a See Table 15.

Me₃[9]aneN₃ ligand deshields the [Mo(CO)₃Br]²⁺ unit by 1150 ppm relative to Cp.

(b) Dicarbonyl compounds

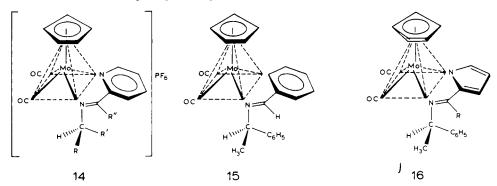
The ⁹⁵Mo NMR data for several dicarbonyl complexes of general formula CpMo(CO)₂(X, Y), where (X, Y) is a bidentate ligand, appear in Table 14. Linewidths are usually < 200 Hz [93,97]. These compounds provide the first direct comparison of the relative shielding effects of related ligands with sulfur donor atoms. Here the shielding increases in the order dithiophosphate < thioxanthate < dithiocarbamate < xanthate.

The most deshielded compound in Table 14 is $CpMo(CO)_2\{C(CF_3)=C(CF_3)C(O)SMe\}$ for which structure 11 has been proposed. The chemical shift of 11 (-845 ppm) is similar to that of 12 (-883 ppm, 185 Hz), an isomeric compound formed in the same reaction.

The binuclear complex $[CpMo(CO)_2(SMe)]_2$ shows two resonances (-158 and -213 ppm) which are deshielded relative to monomeric $CpMo(CO)_2(S, S)$ complexes. The two resonances are probably due to *syn*- and *anti*-isomers (13), analogous to the binuclear Mo(V) complexes (9, Section E(ii)).

13

The binuclear complex $[\{HB(Me_2pz)_3\}Mo(CO)_2]_2S$ contains the linear $[Mo=S=Mo]^{2+}$ fragment [96] and has a very short Mo-S distance (2.200 Å). The ⁹⁵Mo chemical shift (314 ppm) is more deshielded than any other six- or seven-coordinate Mo(II) complex (Tables 12–16). For Mo(II) only metal-metal quadruply-bonded complexes (Section E(v)(e)) have more positive chemical shifts.


Diastereomeric Mo(II) compounds ^a TABLE 15

General formula ^h	Structure	Ligand groups	sdno.		Chemical shift		Linewidth	Ref.
	type	R	R'	R"	δ (ppm)	(mdd)	(Hz)	
[CpMo(CO) ₂ (N,N*)]PF ₆	4	Me	Ph	Ξ	-154, -168	14	<100, <100	97, 99
	14	Ēţ	Ph	Ξ	-145, -167	22	150, 70	26
	14	Pr	Ph	H		20	100, 70	26
	14		Ē	Ξ	- 186	9	120	26
	14		COOMe	Η	-169	5	06	26
	14		COOMe	Ξ	-159	9	06	26
	14		COOMe	Н	- 145	o o	06	26
	14		COOMe	Η	- 160	ပ	120	26
	14		COOCH ₂ Ph	Η	- 156	ບ	160	26
	14		Ph	Me	-141, -147	9	90, 90	26
	14	Me	Et	Me	-154	၁	06	26
	14	Ē	Ph	Ph		32	130, 180	26
$CpMo(CO)_2(C, N^*)$	15	Me	Ph	Н		13	50, 150	26
$CpMo(CO)_2(N', N^*)$	16	z	ı	I		17	70, 70	16
	16	Me	1	ı		9	90, 120	26
$\{HB(Me_2pz)_3\}Mo(CO)(NO)(PPh_2N^*)$	17	H	H	Me	-339, -354	15	170, 220	16
$B(pz)_4Mo(CO)(NO)(PPh_2N^*)$	17	I	zd	Ξ		15	160, 160	26
$B(pz)_4Mo(CO)(NO)(PPh_2N^*)$	17	Me	pz	Н		==	200, 200	26

^a In acetone solution. ^b See structural formulas 14–17 for the identities of the chiral ligands (N,N*), (C,N*), (N',N*) and (PPh₂N*). ^c Diastereomers not differentiated by ⁹⁵ Mo NMR.

(c) Diastereomeric compounds

The addition of chiral bidentate ligands to the $[CpMo(CO)_2]^+$ core yields diastereomeric complexes which differ only in the configuration at the molybdenum atom [98]. A preliminary report [99] showed that ⁹⁵Mo NMR could be used to detect directly the two different molybdenum configurations (Fig. 18) in **14**. A wider study of diastereomeric Mo(II) complexes (**14**, **15**, **16**, Table 15) has shown that ⁹⁵Mo chemical shift differences of up to 32 ppm occur for diastereomers which differ only in the Mo configuration and which contain a phenyl group at the chiral carbon atom of the ligand (R' = Ph). However, individual diastereomers could not be detected when other groups were attached to the chiral carbon atom, even relatively bulky combinations such as R = Bz, R' = COOMe [97]. The ¹H NMR spectra of such complexes show separate resonances for at least one kind of proton in each diastereomeric pair [97,100].

⁹⁵Mo NMR has also differentiated between the diastereomeric molybdenum centers in several polypyrazolylborato complexes containing optically-active aminophosphine ligands (17, Table 15),

17

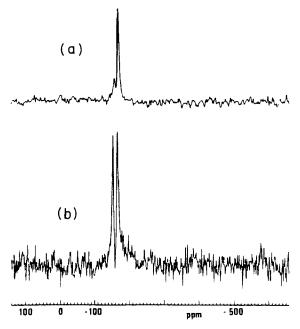


Fig. 18. 95 Mo NMR of diastereomers 14 (R = Me, R' = Ph, R" = H) in ratios (a) 4:1 and (b) 1:1. Adapted from ref. 99, with permission.

(d) Isocyanide compounds

Seven-coordinate Mo(II)-isocyanide complexes show chemical shifts from +69 to -1003 ppm (Table 16, Fig. 19) [29]. The complexes with seven

Mo(Ⅱ) - ISOCYANIDE COMPLEXES

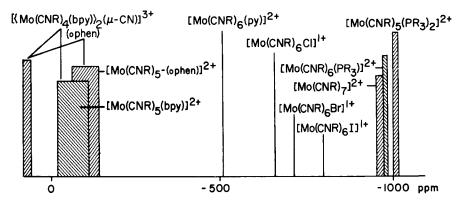


Fig. 19. Chemical shift scale for isocyanide complexes of Mo(II). Reproduced from ref. 29, with permission.

TABLE 16 Isocyanide compounds of Mo(II) ^a

Compound	Chemical shift (ppm)	Linewidth (Hz)
[Mo(CNCH ₃) ₅ (bpy)](PF ₆) ₂	-19	130
$[Mo(CNCHMe_2)_5(bpy)](PF_6)_2$	-64	120
$[Mo(CNCMe_3)_7](PF_6)_2$	-960	35
$[Mo(CNCMe_3)_6(P-n-Bu_3)](PF_6)_2$	- 970	300
[Mo(CNCMe ₃) ₆ I]PF ₆	- 795	500
[Mo(CNCMe ₃) ₆ Br]PF ₆	-703	450
[Mo(CNCMe ₃) ₆ Cl]PF ₆	-688	450
$[Mo(CNCMe_2)_6(py)](PF_6)_2$	-508	600
$[Mo(CNCMe_3)_5(bpy)](PF_6)_2$	-57	100
$[Mo(CNCMe_3)_5(Me_2bpy)](PF_6)_2$	-86	140
$[Mo(CNCMe_3)_5(phen)](PF_6)_5$	-78	130
$[Mo(CNCMe_3)_5(dppe)](PF_6)_2$	-980	600
$[\{Mo(CNCMe_3)_4(bpy)\}_2(\mu-CN)](PF_6)_3$	+69	360
	-61	220
$[\{Mo(CNCMe_3)_4(phen)\}_2(\mu-CN)](PF_6)_3$	+ 59	400
	- 79	170
$[\{Mo(CNCMe_3)_4(Me_2bpy)\}_2(\mu-CN)](PF_6)_3$	+46	320
	-92	200
$[Mo(CNC_6H_{11})_7](PF_6)_2$	-970	70
$[Mo(CNC_6H_{11})_5(bpy)](PF_6)_2$	-68	200
$[Mo(CNC_6H_{11})_5(phen)](PF_6)_2$	- 98	260
$[Mo(CNC_6H_{11})_5(dppe)](PF_6)_2$	-1003	1100
$[Mo(CNBz)_5(bpy)](PF_6)_2$	-115	220

^a All compounds measured in acetone at room temperature; data from ref. 29.

isocyanide ligands absorb at the shielded end of the chemical shift range around -960 ppm. Bulky R-groups on the ligand cause more shielding of the 95 Mo nucleus.

Replacement of the isocyanide ligands by phosphines causes shielding of about 10 ppm for every isocyanide ligand replaced. Substitution of an isocyanide ligand by an aryl nitrogen-donor ligand such as pyridine causes deshielding by over 400 ppm, and the replacement of two isocyanide ligands by two aryl nitrogen atoms, as in the o-phen, bpy or Me₂bpy complexes, deshields the 95 Mo nucleus by about 900 ppm. The [Mo(CNCMe₃)₆X]⁺ complexes show normal halogen dependence for the chemical shift with shielding increasing in the order Cl < Br < I.

In the CN-bridged dimers, $[\{Mo(CNR)_4L\}_2(\mu-CN)]^{3+}$, the C- and N-bonded molybdenum centers can be clearly distinguished. By comparison with the corresponding monomeric $[Mo(CNR)_5L]^{2+}$ complexes, the more

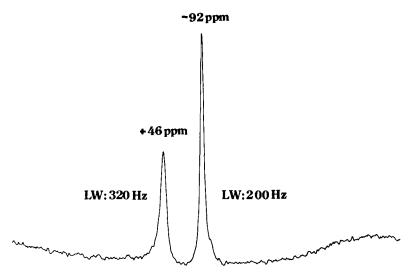


Fig. 20. 95 Mo NMR spectrum of $[\{Mo(CNCMe_3)_4(Me_2bpy)\}_2(\mu-CN)](PF_6)_3$ in acetone. The peak at +46 ppm is assigned to the Mo atom coordinated to the N atom of the μ -CN group. Reproduced from ref. 29, with permission.

shielded ⁹⁵Mo NMR signal is assigned to the C-bonded Mo and the deshielded signal to the N-bonded Mo (Fig. 20). This assignment is also consistent with the greater linewidth for the deshielded signal.

(e) Binuclear compounds

The chemical shifts for binuclear Mo(II) complexes featuring quadrupole bonds range from 3200 to 4200 ppm (Table 17) [16,20]. These complexes show the most deshielded chemical shifts known to date. Due to their large linewidths the 95 Mo NMR spectra of most of these complexes were measured at elevated temperatures. A good correlation between the chemical shifts of the dimers having carboxylato ligands and the p K_a values of these ligands has been found [20]. The lower the p K_a of the ligand the more deshielded is the 95 Mo nucleus in the dimer. Replacing Cl⁻ by Br⁻ in these complexes causes more shielding, i.e. these complexes show a normal halogen dependence like the other Mo(II) complexes mentioned above.

(vi) Molybdenum(I) compounds

Only a few Mo(I) complexes have been studied by 95 Mo NMR. The metal-metal singly-bonded species $[CpMo(CO)_3]_2$ (-1856 ppm, 180 Hz [101]) and $[(Me_5Cp)Mo(CO)_3]_2$ (-1701 ppm, 180 Hz [92]) are found at the shielded end of the molybdenum chemical shift range (Fig. 9). On the other

TABLE 17

Quadruply bonded Mo(II) dimers ^a

Compound	Solvent	Chemical shift (ppm)	Linewidth (Hz)	Temper- ature (°C)
$Mo_2(O_2CMe)_4$	THF	3702	520	55
	HCONMe ₂	3768	670	70
$Mo_2(O_2CCHCl_2)_4$	$HCONMe_2$	4006	1070	70
$Mo_2(O_2CPr^n)_4$	THF	3682	1320	55
	HCONMe ₂ b	3730	1400	70
$Mo_2(O_2CPr^1)_4$	THF	3670	950	55
	HCONMe ₂	3719	1200	70
$Mo_2(O_2CBu^n)_4$	THF	3661	1440	55
	HCONMe ₂	3746	1390	70
$Mo_2(O_2CBu^t)_4$	THF	3656	1040	55
	HCONMe ₂	3696	1130	70
$Mo_2(O_2CCF_3)_4$	THF	4021	480	20
	THF b	4026	250	55
	HCONMe ₂	4144	640	20
	$HCONMe_2$	4148	280	70
	MeCN	4029	320	20
	MeCN	4025	220	50
$Mo_2^{4+}(aq)$	1 M CF ₃ SO ₃ H	4056	430	ca. 40
$K_4[Mo_2(SO_4)_4] \cdot 2 H_2O$	1 M CF ₃ SO ₃ H	4090	990	ca. 40
$K_4[Mo_2Cl_8]$	1 M HCl	3816	1440	20
$Cs_4[Mo_2Br_8]$	HCONMe ₂	3227	510	20

^a Data from ref. 20. ^b Data from ref. 16.

hand, the metal-metal triply-bonded species $[CpMo(CO)_2]_2$ (182 ppm, 100 Hz [92]) is near the center of the chemical shift range. Thus, in reaction (6) the Mo-Mo bond distance decreases from 3.235 Å to 2.448 Å and the chemical shift increases by over 2000 ppm [103,104]. Substantial deshielding of the molybdenum nucleus in metal-metal multiply-bonded complexes is also found for Mo(III) (Section E(iv)) and Mo(II) (Section E(v)(e)) and appears to be a general feature in ^{95}Mo NMR.

$$Cp(CO)_3Mo-Mo(CO)_3Cp \rightarrow Cp(CO)_2Mo\equiv Mo(CO)_2Cp + 2 CO$$
 (6)

(vii) Molybdenum(0) compounds

The first Mo(0) complex to be measured by 95 Mo NMR was Mo(CO)₆ (-1856 ppm, 0.7 Hz) [50]. Several classes of Mo(0) complexes have since been studied including pentacarbonyl, tetracarbonyl, and tricarbonyl com-

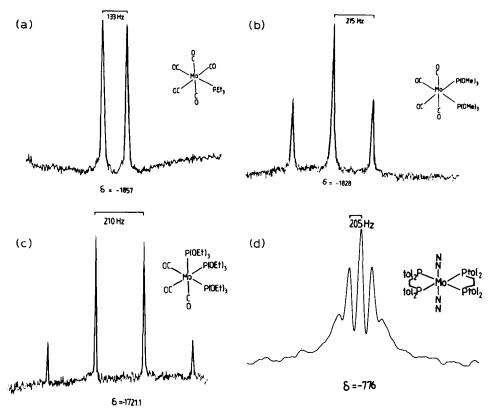


Fig. 21. 95 Mo NMR spectra of: (a) Mo(CO)₅(PEt₃); (b) *cis*-Mo(CO)₄{P(OMe)₃)}₂; (c) *fac*-Mo(CO)₃{P(OEt)₃}₃; (d) *trans*-Mo(N₂)₂(dptpe)₂. Reproduced from ref. 105, with permission.

plexes, and bis-dinitrogen adducts. These complexes cover the shielded part of the known ⁹⁵Mo NMR chemical shift range (Fig. 9). Well-resolved ⁹⁵Mo-³¹P spin-spin coupling is observed for Mo(0) complexes with phosphorus-containing ligands (Fig. 21). Trends in the values of the coupling constants are discussed in Section E(xi)(a).

(a) Pentacarbonyl compounds

A large number of $Mo(CO)_5L$ complexes have been studied (Table 18). Complexes with L = phosphine absorb between -1700 and -1900 ppm, i.e. they are mostly deshielded compared to $Mo(CO)_6$. Complexes with L = phosphite absorb between -1800 and -1900 ppm. In general substitution of a CO group in $Mo(CO)_6$ by a weaker π -acceptor than CO leads to deshielding relative to $Mo(CO)_6$. The order of shielding for $Mo(CO)_5L$ complexes is $P(OR)_3 > PR_3$.

TABLE 18
Pentacarbonyl compounds

•	SOLVEIII	Chemical shift	Linewidth	Ref
		(mdd)	(Hz)	
Mo(CO) ₅ (CNCMe ₂ Ph)	CDCI,	-1752	130	101
$(Et_4N)[HMo_2(CO)_{10}]$	THF	-1937	30	105
$Mo(CO)_{5}(PMe_{2}Ph)$	CHCl ₃	- 1788	10	105
$Mo(CO)_s(PEt_2Ph)$	CH,Ci,	-1815	10	105
$Mo(CO)_s(PBu_2^nPh)$	CH_2Cl_2	-1808	20	105
$Mo(CO)_{5}(PPh_{3})$	CH_2CI_2	-1743	50	106, 124
$Mo(CO)_{5}(PEt_{3})$	CH_2CI_2	-1856	9	105
$Mo(CO)_{s}(PCy_{3})$	CH_2CI_2	-1825	50	106, 124
$Mo(CO)_{5}(PBu_{3}^{n})$	£	-1842	40	105
$Mo(CO)_s(PBu_3^n)$	CH_2CI_2	-1843	20	33, 106, 124
$Mo(CO)_s(PBu_3^1)$	CH_2CI_2	-1711	70	106, 124
$Mo(CO)_{s}(AsPh_{3})$	CH_2CI_2	-1757	110	105, 106, 124
$Mo(CO)_{5}(SbPh_{3})$	CH_2Cl_2	-1864	120	101, 105, 106, 124
$Mo(CO)_{5}\{P(C_{6}H_{4}-p-OMe)_{3}\}$	CH ₂ Cl ₂	-1745	70	101, 106, 124
$Mo(CO)_{5}\{P(OMe)_{3}\}$	£	-1864	5	33, 54, 105
$Mo(CO)_{5}\{P(OEt)_{3}\}$	£	-1854	10	33, 54, 105
$Mo(CO)_{5}\{P(OPr)_{3}\}$	CH_2CI_2	-1851	20	106
$Mo(CO)_{5}\{P(OPr')_{3}\}$. ع	-1835	15	33, 105
$Mo(CO)_{5}\{P(OBu^{n})_{3}\}$	£	-1854	30	105
$Mo(CO)_{5}\{P(OPh)_{3}\}$	CH_2CI_2	-1819	40	33, 105, 106, 124
$Mo(CO)_s(CH_3CN)$	MeCN	-1440	40	106, 124
Mo(CO) ₅ (pip)	CH_2CI_2	-1433	80	106, 124
$Mo(CO)_s(py)$	CDCI,	-1387	70	101
(Et ₄ N)[Mo(CO) ₅ CI]	CH_2CI_2	-1513	110	107
$(Et_4N)[Mo(CO)_5Br]$	CD_2CI_2	-1540	130	101, 107
$(Et_4N)[Mo(CO)_5I]$	CD_2CI_2	- 1660	190	101
$Mo(CO)_5(PPh_2CI)$	CDCI,	-1702		109

TABLE 18 (continued)

Compound	Solvent	Chemical shift	Linewidth	dth Ref.
		(mdd)	(Hz)	
Mo(CO) ₅ (PPh ₂ OMe)	CDCl ₃	- 1791		108
Mo(CO) ₅ (PPh ₂ OEt)	CDCI ₃	-1788		108
Mo(CO) ₅ (PPh ₂ OPr")	CDCI,	-1788		108
Mo(CO) ₅ (PPh ₂ SPr")	CDCL	-1726		109
Mo(CO) ₅ (PPh ₂ OPr ¹)	CDCl3	-1783		108
Mo(CO) ₅ (PPh ₂ SPr ¹)	CDCI3	-1723		601
Mo(CO) ₅ (PPh ₂ OBu ⁿ)	CDCI ₃	-1788		108
$Mo(CO)_{5}(PPh_{2}OBu^{2})$	CDCI,	-1782		108
Mo(CO) ₅ (PPh ₂ OBu')	CDCI,	-1788		108
Mo(CO) ₅ (PPh ₂ OSiMe ₃)	CDCI3	-1765		109
Mo(CO) ₅ (PPh ₂ OPh)	CDCI3	-1775	40	109, 126
$Mo(CO)_s \{PPh_2(OC_6H_4-p-Bu')\}$	$CDCI_3$	-1775	40	126
$Mo(CO)_{5} \{PPh_{2}(OC_{6}H_{4}-p-Ph)\}$	CDCI ₃	-1774	47	126
$Mo(CO)_{5} \{PPh_{2}(OC_{6}H_{4}-p-OMe)\}$	$CDCl_3$	-1778	40	126
$Mo(CO)_{5}\{PPh_{2}(OC_{6}H_{4}-p-OPh)\}$	CDCl ₃	-1774	50	126
$Mo(CO)_{5} \{PPh_{2}(OC_{6}H_{4}-p-SMe)\}$	CDCI ₃	-1775	40	126
$Mo(CO)_5 \{PPh_2(OC_6H_4-p-Cl)\}$	CDCI ³	-1774	40	126
$Mo(CO)_s \{PPh_2(OC_6H_4-p-COPh)\}$	CDCI ₃	-1772	50	126
$Mo(CO)_{5}\{PPh_{2}(OC_{6}H_{4}-p-CO_{2}Me)\}$	CDCI ₃	-1772	50	126
$Mo(CO)_5 \{PPh_2(OC_6H_4-p-COMe)\}$	$CDCl_3$	-1772	50	126
$Mo(CO)_{5}\{PPh_{2}(OC_{6}H_{4}-p-CHO)\}$	CDCI ₃	-1770	50	126
$Mo(CO)_{5}\{PPh_{2}(OC_{6}H_{4}-p-CN)\}$	CDCI ₃	-1771	50	126
$Mo(CO)_5 \{PPh_2(OC_6H_4-p-NO_2)\}$	CDCI ₃	-1770	50	126

																								,
109, 126	109	33	33		109	108	108	108, 109	108, 109	108	108	108	109	109	109	33		33		33		107	107	107
40			20													30		20		90		06	50	100
-1776	-1728	-1816	-1858	(40°C)	-1767	-1765	-1763	-1763	-1760	-1764	-1760	-1763	-1725	-1736	-1737	-1801	(40°C)	-1803	(40°C)	-1423	(40°C)	-1626	-1596	-1534
CDCI,	CDCI,	CH_2CI_2	$CH_2^{-}CI_2^{-}$		$CDCl_3$	$CDCI_3$	CDC13	CDCI,	CDCI ₃	CDCI ₃	CDC13	$CDCI_3$	$CDCl_3$	$CDCl_3$	CDC13	CH_2Cl_2		CH_2CI_2		CH_2CI_2		Me_2SO	Me_2SO	Me ₂ SO
$Mo(CO)_s\{PPh_2(OC_6H_4-p-Me)\}$	$Mo(CO)$, {PPh ₂ (SC ₆ H ₄ -p-Me)}	Mo(CO), {PPh(OMe),}	$Mo(CO)_{s}\{P(OCH_{2})_{3}CEt\}$		$Mo(CO)_s(PPh_2NH_2)$	Mo(CO) ₅ (PPh ₂ NHMe)	Mo(CO) ₅ (PPh ₂ NHEt)	Mo(CO), (PPh, NHPr")	Mo(CO) ₅ (PPh ₂ NHPr ¹)	Mo(CO) ₅ (PPh ₂ NHBu ⁿ)	Mo(CO) ₅ (PPh ₂ NHBu*)	Mo(CO) ₅ (PPh ₂ NHBu ¹)	Mo(CO) ₅ (PPh ₂ NHSiMe ₃)	$Mo(CO)_{5}(PPh_{2}NHPh)$	$Mo(CO)_{5}\{(PPh_{2}NHC_{6}H_{4}-p-Me)\}$	$Mo(CO)_5\{PPh(NEt_2)\}_2$		$Mo(CO)_{5}\{P(NMe_{2})_{3}\}$		$Mo(CO)_s(C_sH_{10}NH)$		$(NH_4)[Mo(CO)_5\{S_2P(OEt)_2\}]$	$Na[Mo(CO),(S,CNPh_2)]$	Na[Mo(CO) ₅ (S ₂ CNMe ₂)]

^a Compounds with coordinated phosphorus atoms usually show ⁹⁵ Mo-³¹P spin-spin coupling: see Section E(xi)(a) and Table 26. ^b Solvent is the ligand.

TABLE 19 Tetracarbonyl compounds ^a

Compound	Solvent	Chemical	Line-	Ref.	
		shift	width		
		(mdd)	(Hz)		
Mo(CO) ₄ (pn)	HCONMe,	-1311	06	54	
Mo(CO) ₄ (bpy)	HCONMe ₂	-1150	110	54, 105	
cis-Mo(CO) ₄ (PPh ₃) ₂	CH,CI,	-1556	50	106, 124	
cis-Mo(CO) ₄ (PBu ₃ ⁿ) ₂	CH_2CI_2	-1742	06	105, 106, 124	
cis-Mo(CO) ₄ (AsPh ₃) ₂	CH_2CI_2	-1577	190	106, 124	
cis-Mo(CO) ₄ (SbPh ₃) ₂	CH,CI,	- 1807	250	106, 124	
cis -Mo(CO) ₄ {P(C ₆ H ₄ - p -OMe) ₃ } ₂	CH_2CI_2	-1560	390	106	
cis-Mo(CO) ₄ (PPh ₂ Me) ₂	CH_2CI_2	-1637	09	106. 124	
cis-Mo(CO) ₄ (PPh ₂ Et) ₂	CH_2CI_2	-1657	80	106	
cis -Mo(CO) ₄ {(pip)P(OPh) ₃ }	CH_2CI_2	-1362	110	106, 124	
cis -Mo(CO) ₄ {(pip)P(OPr ¹) ₃ }	CH_2CI_2	-1394	300	106	
cis-Mo(CO) ₄ (MeCN) ₂	MeCN	-1307	50	106	
cis-Mo(CO) ₄ (pip) ₂	HCONMe ₂	-1093	06	106	
$trans-Mo(CO)_4(PBu_3^n)_2$	toluene	-1741	70	106	
trans-Mo(CO) ₄ (AsPh ₃) ₂	toluene	-1757	5	106	
trans-Mo(CO) ₄ (SbPh ₃) ₂	toluene	-1867	150	106	
trans-Mo(CO) ₄ { $P(C_6H_4-p-OPh)_3$ } ₂	CH_2CI_2	-1739	09	106	
trans-Mo(CO) ₄ (PPh ₂ Et) ₂	toluene	-1705	110	106	
cis-Mo(CO) ₄ (PEt ₃) ₂	CH_2CI_2	-1764	20	105	
cis-Mo(CO) ₄ (PBu ₂ ⁿ Ph) ₂	CH_2CI_2	-1688	80	105	
cis-[Mo(CO) ₄ (dppm)]	CH_2CI_2	-1552	160	105	
cis-[Mo(CO)4(dppe)]	CH_2CI_2	-1782	50	105	
cis-[Mo(CO) ₄ (dppp)]	CH_2CI_2	-1694	09	105	
$Mo(CO)_4(Ph_2PCH_2PPr_2^{\dagger})$	CH_2CI_2	$-1612 (40^{\circ}C)$	150	33	
Mo(CO) ₄ (Ph, PCH, PBu',)	CH,CI,	-1552 (40°C)	50	33	
$Mo(CO)_4(Ph_2PCH_2PPhPr')$	CH_2CI_2	-1588 (40°C)	20	33	

33	33	33	33	33	33, 110, 105	33, 110	105, 110	105, 106	105	33, 105, 106, 124	106	33	33	33	111	111	1111	111	111	111	111	111	111	111	111	111	111	111	111	111	107	107	
140	30	100	400	400	20	9	20	20	30	20	30	30	20	120	70	20	100	40	150	80	09	80	06	100	40	96	09	20	50	09	170	270	
-1578 (40°C)	$-1801 (40^{\circ}C)$	-1538 (40°C)	- 1468 (40°C)	-1545 (40°C)	-1827	- 1844	-1807	-1762	-1808	-1752	-1792	$-1677 (40^{\circ}C)$	$-1670 (40^{\circ}\text{C})$	$-1077 (40^{\circ}\text{C})$	-1522	-1652	-1622	-1707	-1540	-1563	-1623	-1571	- 1654	- 1537	- 1610	- 1700	- 1676	-1685	-1710	-1670	-1417	-1414	
CH,CI,	$CH_{j}^{L}CI_{j}^{L}$	$CH_2^{\dagger}CI_2^{\dagger}$	CH_2CI_3	$CH_2^{\bullet}CI_2^{\bullet}$	CH_2^{-1}/C_b^{-1}	CH_2CI_2/C_6D_6	CH_2CI_2	CH_2CI	CH ₂ Cl ₂	CH_2CI_2	CH_2CI_2	CH_2CI_2	CH_2CI_2	CH_2CI_2	CH_2CI_2	CH_2CI_2	$CH_2^{-}CI_2^{-}$	CH_2CI_2	CH_2CI_2	CH,CI,	CH_2CI_2	CH_2CI_2	CH_2CI_2	CH_2CI_2	CH_2CI_2	CH,CI,	CH_2CI_2	CH_2CI_2	CH_2CI_2	2)CH ₂ Cl ₂	Me_2SO	Me,SO	
$Mo(CO)_4\{CH_2(PPh_3)_3\}$	Mo(CO) ₄ (Ph ₂ PCH=CHPPh ₂)	$Mo(CO)_4(HC(PPh_2)_3)$	$Mo(CO)_4\{Ph_2P(S)CH_2PPh_2\}$	$Mo(CO)_4\{Ph_2P(S)CH_2PPr_2^{\dagger}\}$	cis -Mo(CO) ₄ {P(OMe) ₃ } ₂	$trans$ -Mo(CO) ₄ {P(OMe) ₃ } ₂	cis -Mo(CO) ₄ {P(OEt) ₃ } ₂	cis -Mo(CO) ₄ {P(OPr ⁱ) ₃ } ₂	cis -Mo(CO) ₄ {P(OBu ⁿ) ₃ } ₂	cis -Mo(CO) ₄ {P(OPh) ₃ } ₂	$trans-Mo(CO)_4\{P(OPh)_3\}_2$	$Mo(CO)_4(PPh_2OMe)_2$	$Mo(CO)_4(PMe_2Ph)_2$	$Mo(CO)_4(pip)_2$	cis-Mo(CO) ₄ (PPh ₂ CI) ₂	cis-Mo(CO) ₄ (PPh ₂ NH ₂) ₂	cis-Mo(CO) ₄ (PPh ₂ NHMe) ₂	cis-Mo(CO) ₄ (PPh ₂ OMe) ₂	cis-Mo(CO) ₄ (PPh ₂ SEt) ₂	cis-Mo(CO) ₄ (PPh ₂ NHSiMe ₃) ₂	cis-Mo(CO) ₄ (PPh ₂ OSiMe ₃) ₂	cis-Mo(CO) ₄ (PPh ₂ NHC ₆ H ₄ -p-Me) ₂	cis-Mo(CO) ₄ (PPh ₂ OC ₆ H ₄ - p -Me) ₂	cis-Mo(CO) ₄ (PPh ₂ SC ₆ H ₄ -p-Me) ₂	Mo(CO) ₄ (PPh ₂ NHSiMe ₂ NHPPh ₂)	Mo(CO) ₄ (PPh ₂ OSiMe ₂ OPPh,)	Mo(CO) ₄ (PPh ₂ NHSiMe(Ph)NHPPh ₂)	Mo(CO) ₄ (PPh ₂ OSiMe(Ph)OPPh ₂)	[Mo(CO) ₄],{(PPh,),O,SiO ₂ (PPh,),}	Mo(CO)4(PPh2NMeCH2CH2NMePPh2	$K[Mo(CO)_4(S_2COEt)]$	NafMo(CO), (S,CNMe,)]	

TABLE 19 (continued)

Compound	Solvent	Chemical	Line-	Ref.	
		shift	width		
		(mdd)	(Hz)		
$(NH_4)[Mo(CO)_4\{S, P(OEt), \}]$	Me ₂ SO	-1390	150	107	
$K[Mo(CO)_4\{S,CN(CH,)_4\}]$	Me, SO	-1388	250	107	
$(NH_4)[Mo(CO)_4\{S,CN(CH_3)_4\}]$	NMP	-1380	270	107	
Mo(CO) ₄ (norbornadiene)	CDCI,	-1591	25	101	
cis-Mo(CO) ₄ (py) ₂	pyridine	- 1051	130	130	

^{a 95}Mo-³¹P spin-spin coupling constants appear in Table 26.

When L is a halogen ligand, replacement of Cl^- by Br^- by I^- causes more shielding, i.e. a normal halogen dependence. The available data also suggest that the 95 Mo shielding increases with the atomic number of the Group 15 donor atom: N < P < As < Sb.

(b) Tetracarbonyl compounds

The Mo(CO)₄L₂ complexes (Table 19) are similar to the pentacarbonyl complexes and become more deshielded when P(OR)₃ is replaced by PR₃, and an increase of the shielding from N to P to As to Sb is observed. The replacement of two carbonyl groups in Mo(CO)₆ causes greater chemical shift changes than the mono-substitution of the Mo(CO)₅L series. A comparison of ten pairs of Mo(CO)₅(PPh₂XR) and Mo(CO)₄(PPh₂XR)₂ complexes possessing identical XR groups showed that each Mo(CO)₄(PPh₂XR)₂ complex was less shielded than its Mo(CO)₅(PPh₂XR) counterpart [109]. The correlation coefficient for all the pairs was 0.969. *trans*-Mo(CO)₄L₂ complexes are usually more shielded than the corresponding *cis*-Mo(CO)₄L₂ complexes [33,106].

(c) Tricarbonyl compounds

The ligand effects for $Mo(CO)_3L_3$ complexes (Table 20), where L is a monodentate ligand, are the same as those described above for the $Mo(CO)_5L$ and $Mo(CO)_4L_2$ complexes.

For the $Mo(CO)_3L'$ complexes, where L' is a ligand which can occupy three coordination sites of the metal, the ^{95}Mo nuclear shielding decreases with L' in the order Cp > tol > o-xyl > p-xyl > m-xyl > m-xyl > mes > triphos > cht > $[9]aneS_3 > HB(Me_2pz)_3 > Me_3[9]aneN_3 > dien > [9]aneN_3$. For the aromatic ligands in this series increasing ring methyl substitution, which is expected to increase the electron density in the aryl ring and presumably around the Mo nucleus, leads to shielding [112]. It is interesting to note that the $HB(Me_2pz)_3$ ligand deshields the molybdenum nucleus by nearly 1000 ppm relative to Cp.

The novel binuclear complex (18) contains two Mo(CO)₃([9]aneN₃) units linked by a -CH₂CH₂- bridge between nitrogen atoms from each of the 1,4,7-triazacyclononane fragments. The chemical shift is intermediate between the shifts for Mo(CO)₃, (Me₃[9]aneN₃) and Mo(CO)₃([9]aneN₃) [87] as expected for alkylation of one nitrogen atom of each cyclic ligand. The large linewidth of 18 (850 Hz) presumably reflects the increased rotational correlation time for the larger binuclear species [114].

TABLE 20 Tricarbonyl compounds

Compound	Solvent	Chemical shift (ppm)	Line- width (Hz)	Ref.
Na[CpMo(CO) ₃]	THF	-2123	20	112
$Mo(CO)_3(tol)$	CH ₂ Cl ₂	-2034	< 10	54, 112
$Mo(CO)_3(o-xyl)$	CH_2Cl_2	-1988	< 10	112
$Mo(CO)_3(p-xyl)$	CH_2Cl_2	-1979	10	112
$Mo(CO)_3(m-xyl)$	CH_2Cl_2	-1971	10	112
Mo(CO) ₃ (mes)	CH_2Cl_2	-1907	10	54, 112
Mo(CO) ₃ (cht)	CH ₂ Cl ₂	-1684	10	54, 112
	CDCl ₃	-1675	20	101
$Mo(CO)_3([9]aneS_3)$	$MeNO_2$	-1350	30	127
$(Et_4N)[Mo(CO)_3\{HB(Me_2pz)_3\}]$	HCONMe ₂	-1149	80	87
$Mo(CO)_3(Me_3[9]aneN_3)$	Me ₂ SO	-1092	160	87
Mo(CO) ₃ (dien)	HCONMe ₂	-1088	70	54
$Mo(CO)_3([12]aneN_3)$	CH ₂ Cl ₂	-1001	13	87
$Mo(CO)_3([9]aneN_3)$	CH ₂ Cl ₂	-866	20	87
fac-Mo(CO) ₃ (py) ₃	pyridine	-800	7	185
fac-Mo(CO) ₃ (PCl ₃) ₃	CDCl ₃	-1885	3	101
fac-Mo(CO) ₃ (AsPh ₃) ₃	CDCl ₃	-1549	350	101
fac-Mo(CO) ₃ (SbPh ₃) ₃	CDCl ₃	-1669	50	101
Mo(CO) ₃ (triphos)	CH ₂ Cl ₂	-1760	40	106, 124
${Mo(CO)_3}_2(dtne)$	Me ₂ SO	-1012	850	114
$Mo(CO)_3(PPh_2Me)_3$	CH ₂ Cl ₂	-1427	10	124
fac-Mo(CO) ₃ (MeCN) ₃	MeCN	-1114	10	106
fac-Mo(CO) ₃ {P(OMe) ₃ } ₃	CH_2Cl_2/C_6D_6	-1756	10	33, 105, 110
mer -Mo(CO) ₃ {P(OMe) ₃ } ₃	CH_2Cl_2/C_6D_6		200	33, 110
fac -Mo(CO) ₃ {P(OEt) ₃ } ₃	CH ₂ Cl ₂	-1721	4	54, 105, 110
fac -Mo(CO) ₃ (bpy){P(OEt) ₃ } ₂	CH_2Cl_2	- 1097	50	105

Comparison of the data for fac- and mer-Mo(CO)₃{P(OMe)₃}₃ shows that the mer isomer is 24 ppm more shielded and has a substantially greater linewidth [33].

(d) Dicarbonyl and monocarbonyl compounds

Relatively few dicarbonyl and monocarbonylmolybdenum(0) complexes have been studied by 95 Mo NMR (Table 21). The data for *cis*- and trans-Mo(CO)₂{P(OMe)₃}₄, and Mo(CO){P(OMe)₃}₅ and Mo{P(OMe)₃}₆ [33] complete the series Mo(CO)_{6-n}{P(OMe)₃}_n for n = 0-6. Figure 22 shows that the molybdenum chemical shift exhibits a shallow minimum at n = 1 and then increases smoothly with increasing n. For n = 2 and n = 4

TABLE 21
Dicarbonyl and monocarbonyl compounds

Compound	Solvent	Chemical shift (ppm)	Line- width (Hz)	Ref.
cis -Mo(CO) ₂ {P(OMe) ₃ } ₄	CH ₂ Cl ₂ /C ₆ D ₆	- 1660	100	33, 110
trans-Mo(CO) ₂ {P(OMe) ₃ } ₄	CH_2Cl_2/C_6D_6	-1679	1600	33
Mo(CO) ₂ (dptpe) ₂	THF	-1802 (57°C)	120	105
$Mo(CO)_{2}(C_{7}H_{7})I$	CDCl ₃	-1349	107	101
$[Mo(CO)_2(C_7H_7)(dppe)]PF_6$	CD_2Cl_2	-1083	250	101
$Mo(CO)\{P(OMe)_3\}_5$	CH_2Cl_2/C_6D_6	-1518	100	33, 110
$Mo\{P(OMe)_3\}_6$	a	-1358	15	33

^a Light petroleum.

the *trans* isomer is more shielded than the *cis* isomer. The linewidths of $cis\text{-Mo(CO)}_2\{P(OMe)_3\}_4$ (100 Hz) and $trans\text{-Mo(CO)}_2\{P(OMe)_3\}_4$ (1600 Hz) differ enormously, reflecting the large electric field gradient (q) in the trans isomer (eqn. 1).

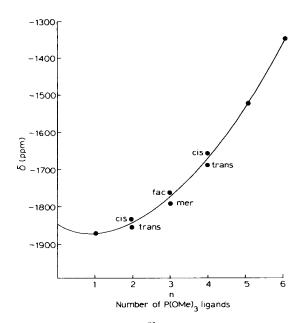


Fig. 22. Variation of $\delta(^{95}\text{Mo})$ with n for species $\text{Mo(CO)}_{6-n}\{\text{P(OMe)}_3\}_n$. Adapted from data of refs. 33 and 110.

TABLE 22
Dinitrogen compounds ^a

Compound	Chemical shift	Line- width
	(ppm)	(Hz)
trans-Mo(N ₂) ₂ (dptpe) ₂ ^b	<i>−</i> 776	~ 90
	(55°)	
$trans$ -Mo(N ₂) ₂ {(4-C ₆ H ₄ OMe) ₂ PCH ₂ CH ₂ P(4-C ₆ H ₄ OMe) ₂ } ₂	- 798	~ 100
$trans-Mo(N_2)_2\{(4-C_6H_4Me)_2PCH_2CH_2P(4-C_6H_4Me)_2\}_2$	-793	~ 100
trans-Mo(N ₂) ₂ (dppe) ₂	-787	~ 100
$trans-Mo(N_2)_2\{(4-C_6H_4Cl)_2PCH_2CH_2P(4-C_6H_4Cl)_2\}_2$	-785	~ 100
$trans-Mo(N_2)_2\{(4-C_6H_4CF_3)_2PCH_2CH_2P(4-C_6H_4CF_3)_2\}_2$	-774	~ 100
$trans-Mo(N_2)_2\{(3-C_6H_4Me)_2PCH_2CH_2P(3-C_6H_4Me)_2\}_2$	<i>−</i> 795	~ 100
trans-Mo(N ₂) ₂ (depe) ₂	-1022	~ 100
trans-Mo(N ₂) ₂ (dppe)(depe)	-899	~ 100
trans-Mo(N ₂) ₂ (PMe ₂ Ph) ₄	-447	~ 100
$trans$ -Mo(N_2) ₂ (PPh ₂ Me) ₄	- 464	~ 100

^a In THF, data from ref. 115. ^b Ref. 105.

(e) Dinitrogen compounds

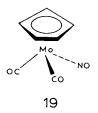
The 95 Mo NMR spectra of bis-dinitrogen complexes of the general formula $Mo(N_2)_2(PR_3)_4$ cover a chemical shift range of about 600 ppm (Table 22) [105,115]. A large number of these complexes have chelating $R_2PCH_2CH_2PR_2$ ligands. When R = Et the complex is more shielded than when R = aryl. The complexes with monodentate phosphine ligands have the most deshielded chemical shifts in this series (~ -450 ppm).

(viii) Mononitrosyl and thionitrosyl compounds

Data for several types of mononitrosylmolybdenum complexes appear in Table 23. So-called "piano-stool" complexes, such as $CpMo(CO)_2(NO)$ (19), contain the $\{MoNO\}^6$ group [119] and are formally isoelectronic with Mo(0) complexes. The shielding of the ^{95}Mo nucleus decreases in the order $Cp > Me_5Cp > HB(Me_2pz)_3 > HB(pz)_3 > [9]aneN_3 > Me_3[9]aneN_3$. This order parallels that for $Mo(CO)_3$ complexes of the same ligands except that the $[9]aneN_3$ and $Me_3[9]aneN_3$ complexes are reversed. Each $LMo(CO)_2(NO)$ complex is less shielded than its $LMo(CO)_3$ analogue (Table 20). For the Cp and Me_5Cp complexes $^{95}Mo^{-14}N$ spin–spin coupling is observed (Section E(xi)(d)) at room temperature [116].

Substitution of a nitrosyl group by a thionitrosyl group causes deshielding

TABLE 23


Mononitrosyl and thionitrosyl compounds

Compound	Solvent	Chemical shift (ppm)	Line- width (Hz)	Ref.
CpMo(CO) ₂ (NO)	MeCN	-1584	< 40	116
$(Me_5Cp)Mo(CO)_2(NO)$	MeCN	-1404	< 40	116
LMo(CO) ₂ (NO) ^a	CH ₂ Cl ₂	-743	60	117
$LMo(CO)_2(NS)$	CH_2Cl_2	-192	50	117
$\{HB(pz)_3\}Mo(CO)_2(NO)$	$MeCN/Me_2CO$	-672	70	116
[([9]aneN3)Mo(CO)2(NO)]BF4	Н,О	-616	110	87
[([12]aneN3)Mo(CO)3(NO)]ClO4	H ₂ O	-580	90	87
[(Me3[9]aneN3)Mo(CO)2(NO)]PF6	MeCN	-437	80	87
$[CpMo(NO)I_2]_2$	HCONMe,	-26	750	118
$Cp(\sigma-Cp)Mo(NO)(S_2CNMe_2)$	CDCl ₃	-369	390	101
$Mo(NO)(S_2CNMe_2)_3$	CH,Cl,	-212	900	30
$Mo(NS)(S_2CNMe_2)_3$	CH_2Cl_2	140	650	30
$Mo(NO)(S_2CNEt_2)_3$	CH ₂ Cl ₂	-206	900	30
$Mo(NS)(S_2CNEt_2)_3$	CH_2Cl_2	142	850	30
CpMo(NO)(SPh) ₂	CDCl ₃	144	580	186
LMo(NO)I ₂	CH,Cl,	2272	1800	118
LMo(NO)Cl ₂	CH ₂ Cl ₂	1811	1400	118
LMo(NO)F ₂	CH ₂ Cl ₂	1274	1490	118
LMo(NO)I(NHC ₆ H ₄ Me)	CH ₂ Cl	568	1350	118
LMo(NO)I(NHEt)	CH ₂ Cl ₂	430	1 2 00	118
LMo(NO)Cl(NHEt)	CH_2CI_2	404	1000	118
LMo(NO)I(OPh)	CH ₂ Cl ₂	1179	1600	118
LMo(NO)Cl(OPh)	CH ₂ Cl ₂	1050	1750	118
LMo(NO)Cl(SPh)	CH_2CI_2	1200	2340	118
LMo(NO)Cl(NHC ₆ H ₄ Br)	CH_2Cl_2	539	1500	118
LMo(NO)Cl(NHC ₆ H ₄ Me)	CH_2CI_2	523	1700	118
LMo(NO)(OEt) ₂	CH_2Cl_2	464	800	118
LMo(NO)I(NHNMe ₂)	CH_2Cl_2	284	900	118
LMo(NO)(SPh) ₂	CH_2Cl_2	990	1560	118
LMo(NO)(OPh) ₂	CH_2CI_2	624	1600	118
LMo(NO)(NHPh) ₂	CH_2CI_2	161	600	118

^a L = Hydrotris(3,5-dimethyl-1-pyrazolyl)borate.

of about 500 ppm, a chemical shift change comparable with that seen in the replacement of a terminal oxo group by a terminal sulfido group in Mo(VI) complexes [19,68,71]. All of the LMo(CO)₂(NX) piano stool complexes have

relatively narrow lines (40-110 Hz).

The Mo(NO)(S₂CNR₂)₃ complexes of Table 23 contain the {MoNO}⁴ group and are formally related to seven-coordinate Mo(II) complexes. The chemical shift of Mo(NO)(S₂CNMe₂)₃ (-212 ppm) is substantially deshielded relative to the {MoNO}⁶ complexes. The linewidths of these {MoNO}⁴ complexes (900 Hz) are much larger than those for the piano stool molecules discussed above. Substitution of the nitrosyl group by a thionitrosyl group again causes deshielding, but by a smaller amount (350 ppm) [30].

Six-coordinate $\{MoNO\}^4$ complexes with the general formula $\{HB(Me_2pz)_3\}Mo(NO)XY$, where X and Y are monoanionic ligands, exhibit ⁹⁵Mo NMR resonances (160 to 2270 ppm) which are substantially deshielded [118] relative to the other types of mononitrosyl complexes in Table 23, and relative to monomeric Mo(II) (d^4) complexes (Tables 12–16). In addition these nitrosyl complexes show an inverse halogen dependence of the chemical shift, a phenomenon seen previously only for Mo(VI) complexes [73]. For the $\{HB(Me_2pz)_3\}Mo(NO)X_2$ compounds shielding increases in the order X = I < CI < SPh < OPh < OEt < NHPh. The linewidths are large relative to other complexes of similar molecular size and shape. For example, the linewidth of $\{HB(Me_2pz)_3\}Mo(NO)Cl_2$ is 1400 Hz, whereas the linewidth of $\{HB(Me_2pz)_3\}Mo(CO)_2(NO)$ is only 60 Hz. These large differences in linewidth presumably arise from large differences in the asymmetry parameters for the two molecules.

(ix) Dinitrosyl compounds

The chemical shifts measured for six-coordinate $[Mo(NO)_2]^{2+}$ complexes which contain the $\{Mo(NO)_2\}^6$ unit range from +200 to -1000 ppm (Table 24). The chemical shifts generally decrease with the increasing ability of ancillary ligands to delocalize electrons from the metal atom. Substitution of Cl^- by Br^- and I^- in $CpMo(NO)_2X$ complexes results in a decrease of the chemical shift, i.e. these complexes show a normal halogen dependence. Figure 6 and Table 24 show that the linewidth of $Mo(NO)_2(acac)_2$ increases from 90 to 435 Hz with increasing viscosity of the solvent. The chemical shift varies by only 25 ppm in these solvents and shows no correlation with viscosity.

TABLE 24
Dinitrosyl compounds ^a

Compound	Solvent	Chemical	Linewidth
		shift	(Hz)
		(ppm)	
CpMo(NO) ₂ I	CH ₂ Cl ₂	- 985	70
CpMo(NO) ₂ Br	CH_2Cl_2	-883	70
CpMo(NO) ₂ Cl	CH ₂ Cl ₂	-852	70
(Me ₅ Cp)Mo(NO) ₂ Cl	MeCN	-800	70
$Mo(NO)_2Cl_2(PPh_3)_2$	HCONMe,	-500	430
$Mo(NO)_2(S_2CNMe_2)_2$	HCONMe ₂	-438	90
	MeCN	-437	70
	Me_2CO	-438	60
	Me_2SO	-435	150
$Mo(NO)_2(S_2CNEt_2)_2$	HCONMe ₂	-430	120
	MeCN	-430	80
	Me ₂ CO	-431	80
	Me_2SO	-425	170
$Mo(NO)_2\{HB(Me_2pz)_3\}Cl$	CH_2Cl_2	-384	180
$Mo(NO)_2(acac)_2$	HCONMe ₂	-298	190
	MeCN	-298	90
	Me ₂ CO	-296	90
	Me_2SO	-282	315
	MeOH	-286	105
	CH_2Cl_2	-283	110
	CH ₂ ClCH ₂ Cl	-285	190
	benzene	-281	135
	toluene	- 281	125
	iso-pentanol	-271	435
Mo(NO) ₂ Cl ₂ (phen)	HCONMe ₂	-265	160
	MeCN	-265	170
	Me ₂ CO	-265, -280	90
$Mo(NO)_2Cl_2(bpy)$	$HCONMe_2$	-263	170
	MeCN	-255	120
	Me ₂ CO	-264, -280	100
$(\mathrm{Et_4N})_2[\mathrm{Mo(NO)}_2(\mathrm{CN})_4]$	HCONMe ₂	-104	20
	MeCN	-98	20
	H_2O	-105	20
$Cs_2[Mo(NO)_2Cl_4]$	HCl	+ 152	170
$(\mathrm{Et}_4\mathrm{N})_2[\mathrm{Mo}(\mathrm{NO})_2(\mathrm{ox})_2]$	$HCONMe_2$	+ 201	110

^a Data from ref. 28.

The 95 Mo NMR spectra of Mo(NO) $_2$ Cl $_2$ L (where L = o-phen or bpy) show one peak in HCONMe $_2$ and MeCN, but two peaks in acetone. This has been attributed to the partial dissociation of Cl $^-$ from the parent

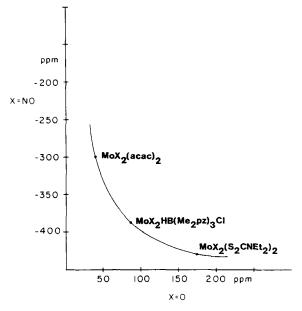


Fig. 23. Inverse correlation of $\delta(^{95}\text{Mo})$ for $[MX_2]^{2+}$ species (X = NO, O).

complex in acetone. Addition of HCl to the acetone solution yields an NMR spectrum with only the parent species present [28].

The general response of the 95 Mo chemical shift of six-coordinate $[Mo(NO)_2]^{2+}$ complexes to the other four co-ligands is the opposite of that found for six-coordinate $[MoO_2]^{2+}$ complexes in which the Mo atom is in the +VI oxidation state (Tables 5 and 6). The differing chemical shift response of these two classes of compounds to the same co-ligands is illustrated in Fig. 23.

(x) Molybdenum-mercury compounds

A series of $Cp(CO)_2LMoHgX$ complexes has been studied and the chemical shifts found to vary from -1706 to -1939 ppm, depending on the nature of L and X (Table 25).

(xi) Spin-spin couplings between 95 Mo and other nuclei

Spin-spin couplings between ⁹⁵Mo and ³¹P, ¹⁹F, ¹⁷O, ¹⁴N and ¹H have been observed by ⁹⁵Mo NMR. Coupling between ¹³C and ⁹⁵Mo has been observed by ¹³C NMR for Mo(CO)₆; the ⁹⁵Mo-¹³C coupling constant is 68 Hz [121–123].

TABLE 25 $\frac{\text{Cp(CO)}_2\text{LMoHgX compounds}^{\text{a}}}{\text{L}}$ $\frac{\text{X}}{\text{X}}$

L	X	Chemical shift (ppm)	Linewidth (Hz)
CO	CpMo(CO) ₃	- 1834	160
CO	Cİ	-1826	160
CO	Br	-1815	180
CO	Ī	-1795	120
CO	S ₂ COEt	- 1911	120
CO	S_2CNEt_2	-1939	120
CO	$S_2 P(OEt)_2$	-1878	120
P(OMe) ₃	Cl	− 1745	260
P(OMe) ₃	Br	- 1727	230
P(OMe) ₃	Ī	-1706	220
P(OMe) ₃	S ₂ CNEt ₂	- 1844	180
P(OMe) ₃	$S_2 P(OEt)_2$	-1780	180

^a In CHCl₃, data from refs. 93, 120.

(a) $^{95}Mo-{}^{31}P$ coupling

³¹P has a nuclear spin of 1/2 (100% abundant) and ⁹⁵Mo-³¹P spin-spin coupling has been observed for a large number of Mo(0) complexes with phosphorus ligands (Fig. 21). The coupling constants range from 117 to 290 Hz (Table 26) with the smaller values (117–145 Hz) being observed for phosphine ligands. Replacement of a phenyl group in the triphenylphosphine ligand by an alkoxy group increases the coupling constant by 12–15 Hz [33,105,108,110,111]. Replacement of the phenyl group by an -NR₂ or -SR group changes *J* only slightly compared with triphenylphosphine [108,110,111]. For phosphite ligands coupling constants from 209 to 257 Hz are found [33,105,124]. The largest coupling constants are due to PF₃ ligands (279–290 Hz) [125]. For a given phosphine ligand (L) the ⁹⁵Mo-³¹P coupling constants are relatively independent of the number of phosphorus ligands attached to the ⁹⁵Mo nucleus, and similar coupling constants are found for Mo(CO)₅L, Mo(CO)₄L₂ and Mo(CO)₃L₃ complexes.

(b) $^{95}Mo-^{19}F$ coupling

In complexes containing the PF₃ ligand second order coupling between ⁹⁵Mo and ¹⁹F is also found. The coupling constant is 14 Hz [125].

(c) $^{95}Mo^{-17}O$ coupling Spin-spin coupling between ^{17}O (I=5/2) and ^{95}Mo has been observed

TABLE 26 95 Mo-31P coupling constants

Compound	Column	1,95Me 31p)	Doc
Compound	30106111		Nel.
		(HZ)	
Mo(CO) ₅ (PEt ₃)	B	133	105
Mo(CO) ₅ (PBu ⁿ ₃)	a	133	105
Mo(CO), (PPh,)	CH,CI,	144	101, 105
Mo(CO) _s (PMe, Ph)	CHČI,	131	105
Mo(CO), (PEt, Ph)	CH,CI,	132	105
Mo(CO), (PBu, Ph)	CH, CI ,	133	105
Mo(CO), (PCy,)	CH_2CI_3	129	106, 124
Mo(CO), (PBu ¹ ₁)	$CH_{2}G_{3}$	127	33, 105,
	1		106, 124
$Mo(CO)$, { $P(OMe)$,}	п	218	33, 105
$Mo(CO)_{s}\{P(OEt)_{3}\}$	a	214	33, 54, 105
$Mo(CO)_s \{P(OPr')_3\}$	অ	215	33, 105
$Mo(CO)_{5}\{P(OBu^{n})_{3}\}$	P	216	105
$Mo(CO)_{5}\{P(OPh)_{3}\}$	CHCl3	237	33, 105
$Mo(CO)_{5}\{P(C_{6}H_{4}-p\cdot OMe)_{3}\}$	CH_2CI_2	156	124
$Mo(CO)_5\{P(OCH_2)_3CEt\}$	CH_2Cl_2	227 (40°C)	33
$Mo(CO)_{5}\{PPh(OMe)_{2}\}$	CH_2Cl_2	183	33
Mo(CO) ₅ (PPh ₂ Cl)	CDC13	165	109
Mo(CO) ₅ (PPh ₂ OMe)	$CDCI_3$	156	108
Mo(CO) ₅ (PPh ₂ OEt)	$CDCl_3$	159	108
Mo(CO) ₅ (PPh ₂ OPr ⁿ)	CDCI	159	108
Mo(CO), (PPh, SPr ⁿ)	CDCI	142	109
Mo(CO) ₅ (PPh ₂ OPr ¹)	CDCI ₃	156	108
Mo(CO) ₅ (PPh ₂ SPr ¹)	CDCI,	145	109
Mo(CO) ₅ (PPh ₂ OBu ⁿ)	CDCI3	159	108
Mo(CO) ₅ (PPh ₂ OBu ⁵)	CDCI	159	108
Mo(CO) ₅ (PPh ₂ OBu ¹)	CDCI ³	159	108
Mo(CO) ₅ (PPh ₂ OSiMe ₃)	CDCI3	161	109
Mo(CO) ₅ (PPh ₂ OPh)	CDCI	161	109, 126

$Mo(CO)_{5}\{PPh_{2}(OC_{6}H_{4}-p-Bu^{1})\}$	CDCI,	164	126
$Mo(CO)_{5} \{PPh_{2}(OC_{6}H_{4}-p-Ph)\}$	CDCI,	164	126
$Mo(CO)_{5}\{PPh_{2}(OC_{6}H_{4}-p-OMe)\}$	CDCI ³	162	126
$Mo(CO)_s \{PPh_2(OC_6H_{4-p}-OPh)\}$	CDCl3	162	126
$Mo(CO)_{5} \{PPh_{2}(OC_{6}H_{4}-p-SMe)\}$	CDC13	161	126
$Mo(CO)_{5}\{PPh_{2}(OC_{6}H_{4}-p-CI)\}$	CDCI ³	161	126
$Mo(CO)_s \{PPh_2(OC_6H_{4-p}\text{-}COPh)\}$	CDCI	164	126
$Mo(CO)_{5}\{PPh_{2}(OC_{6}H_{4}-p-CO_{2}Me)\}$	CDCI ₃	164	126
$Mo(CO)_{5}\{PPh_{2}(OC_{6}H_{4}-p-COMe)\}$	CDCI ³	164	126
$Mo(CO)_{5}\{PPh_{2}(OC_{6}H_{4}-p-CHO)\}$	CDCI3	164	126
$Mo(CO)_{5}\{PPh_{2}(OC_{6}H_{4}-p-CN)\}$	CDCI ³	165	126
$Mo(CO)_{s} \{PPh_{2}(OC_{6}H_{4-p}-NO_{2})\}$	CDCI ₃	165	126
$Mo(CO)_5 \{PPh_2(OC_6H_4-p-Me)\}$	CDCI ₃	162	109, 126
$Mo(CO)_s \{PPh_2(SC_6H_4-p-Me)\}$	CDC13	150	109, 126
$Mo(CO)_{5}(PPh_{2}NH_{2})$	CDCI ₃	148	109
Mo(CO) ₅ (PPh ₂ NHMe)	$CDCI_3$	146	108
Mo(CO) ₅ (PPh ₂ NHEt)	$CDCI_3$	146	108
Mo(CO) ₅ (PPh ₂ NHPr ⁿ)	$CDCI_3$	146	108
Mo(CO) ₅ (PPh ₂ NHPr')	$CDCI_3$	146	108
$Mo(CO)_{s}(PPh_{2}NHBu^{n})$	$CDCI_3$	149	108
$Mo(CO)_{5}(PPh_{2}NHBu^{s})$	CDCI ³	151	108
Mo(CO) ₅ (PPh ₂ NHBu ¹)	CDCI ³	146	108
$Mo(CO)_s(PPh_2NHSiMe_3)$	$CDCl_3$	149	109
Mo(CO) ₅ (PPh ₂ NHPh)	CDCI ₃	150	109
$Mo(CO)_s \{PPh_2(NHC_6H_4-p-Me)\}$	$CDCI_3$	153	109
$Mo(CO)_s \{PPh(NEt_2)_2\}$	CH_2Cl_2	159 (40°C)	33
$Mo(CO)_{5}\{P(NMe_{2})_{3}\}$	CH_2CI_2	173 (40°C)	33
cis-Mo(CO) ₄ (PEt ₃) ₂	CH_2Cl_2	125	105
cis-Mo(CO) ₄ (PBu ₃ ⁿ) ₂	CH_2CI_2	124	105
cis-Mo(CO) ₄ (PBu ₂ ⁿ Ph) ₂	CH_2CI_2	140	105
$Mo(CO)_4(PPh_2OMe)_2$	CH_2CI_2	161	33
cis-Mo(CO) ₄ (dppm)	CH_2CI_2	119	33, 105
cis-Mo(CO) ₄ (dppe)	CH_2CI_2	128–145	33, 105, 124
cis-Mo(CO) ₄ (dppp)	CH_2CI_2	142	33, 105

TABLE 26 (continued)

Compound	Solvent	$J(^{95}\text{Mo}-^{31}\text{P})$	Ref.
		(Hz)	
Mo(CO) ₄ (Ph ₂ PCH ₂ PPr ₂)	CH ₂ Cl ₂	117 (40°C)	33
$Mo(CO)_4(Ph_2PCH_2PBu_2^t)$	CH_2CI_2	117 (40°C)	33
Mo(CO) ₄ (Ph ₂ PCH ₂ PPhPr ¹)	CH_2CI_2	124 (40°C)	33
$Mo(CO)_4\{CH_2=C(PPh_2)_2\}$	CH_2CI_2	125 (40°C)	33
Mo(CO) ₄ (Ph ₂ PCH=CHPPh ₂)	$CH_{2}^{-1}CI_{2}^{-1}$	134 (40°C)	33
$Mo(CO)_4\{HC(PPh_2)_3\}$	CH_2CI_2	127 (40°C)	33
cis -Mo(CO) ₄ {P(OMe) ₃ } ₂	CH_2CI_2	215	33, 105, 110
cis -Mo(CO) ₄ {P(OEt) ₃ } ₂	CH_2CI_2	213	105
cis -Mo(CO) ₄ {P(OPr') ₃ } ₂	CH_2CI_2	209	105
$cis ext{-Mo}(CO)_4\{P(OBu^n)_3\}_2$	CH_2CI_2	212	105
cis -Mo(CO) ₄ {P(OPh) ₃ } ₂	CH_2CI_2	226	105
$Mo(CO)_4(PMe_2Ph)_2$	CH_2CI_2	130 (40°C)	33
cis -Mo(CO) ₄ {P(OPh) ₃ } ₂	$CH_2^{-}Cl_2$	250	106, 124
cis -Mo(CO) ₄ (pip){P(OPh) ₃ }	CH_2CI_2	257	106, 124
cis-Mo(CO) ₄ (PPh ₃) ₂	CH_2CI_2	140	106, 124
cis-Mo(CO) ₄ (PPh ₂ Me) ₂	CH_2CI_2	133	106, 124
$trans-Mo(CO)_4\{P(OPh)_3\}_2$	CH_2CI_2	225	124
$trans-Mo(CO)_4\{P(OMe)_3\}_2$	CH_2CI_2/C_5D_6	235	33, 110
trans-Mo(CO) ₄ (PPh ₂ Me) ₂	$C_6H_5CH_3$	134	124
cis-Mo(CO) ₄ (PPh ₂ CI) ₂	CH_2CI_2	166	111
cis-Mo(CO) ₄ (PPh ₂ NH ₂) ₂	CH_2Cl_2	144	111
cis-Mo(CO) ₄ (PPh ₂ NHMe) ₂	CH_2CI_2	138	111
cis-Mo(CO) ₄ (PPh ₂ OMe) ₂	CH_2CI_2	153	111
cis-Mo(CO) ₄ (PPh ₂ SEt) ₂	CH_2CI_2	140	111
cis-Mo(CO) ₄ (PPh ₂ NHSiMe ₃) ₂	CH_2CI_2	139	111
cis-Mo(CO) ₄ (PPh ₂ OSiMe ₃) ₂	CH_2CI_2	162	111
cis -Mo(CO) ₄ {PPh ₂ (NHC ₆ H ₄ - p -Me)} ₂	CH_2CI_2	140	111
cis -Mo(CO) ₄ {PPh ₂ (OC ₆ H ₄ - p -Me)} ₂	CH ₂ Cl ₂	157	111
cis -Mo(CO) ₄ {PPh ₂ (SC ₆ H ₄ - p -Me)} ₂	CH_2CI_2	133	111

145	154	144		153 111	153 111	124	214	210	240	129 106, 124	126		281 125	288 125	290 125	290 125	251	220	240		/C ₆ D ₆ 256 33	279 125	205 (55°C) 105		115	180 115	180	180	ca. 165 115	185 115	185 115	1 1
CH ₂ Cl ₂			CH ₂ Cl ₂			CH ₂ Cl ₂	CH,C,	CH,CI,	CH ₂ Cl ₂	CH ₂ Cl ₂	CH_2CI_2	£	£	٤	٤	£	CDCI	CH_2CI_2	CH_2CI_2/C_6D_6	CD ₂ Cl ₂	CH_2CI_2/C_6D_6	CF		,		•		$H_2P(4-C_6H_4CF_3)_2$ } ₂ THF		THF	THF	TUE
Mo(CO) ₄ (PPh ₂ NHSiMe ₂ NHPPh ₂)	Mo(CO) (PPh_OSIMe_OFPh_2) Mo(CO) (PPh_NHSiMe(Ph)NHPph_)	Mo(CO) (DDL OC) Mo(DL) CDL	MO(CO) ₄ (FFn ₂ OSIMe(Fn)OFFn ₂)	$[MO(CO)_4]_2\{(PPh)_2O_2SiO_2(PPh_2)_2\}$	Mo(CO) ₄ (PPh ₂ NMeCH ₂ CH ₂ NMePPh ₂)	fac -Mo(CO) $_3\{PBu_3^n\}_3$	$fac ext{-Mo(CO)}_3\{P(OMe)_3\}_3$	fac -Mo(CO) $_3\{P(OEt)_3\}_3$	fac -Mo(CO) ₃ (bpy){P(OEt) ₃ }	Mo(CO)3(triphos)	$Mo(CO)_3(PPh_2Me)_3$	Mo(CO) ₅ (PF ₃)	cis-Mo(CO) ₄ (PF ₃) ₂	trans-Mo(CO) ₄ (PF ₃) ₂	fac -Mo(CO) $_3(PF_3)_3$	mer-Mo(CO) ₃ (PF ₃) ₃	fac -Mo(CO) $_3$ (PCI $_3$) $_3$	cis -Mo(CO) ₂ {P(OMe) ₃ } ₄	cis-Mo(CO){P(OMe) ₃ } ₅	$[Mo(CO)(C_7H_7)(dppe)]PF_6$	$Mo\{P(OMe)_3\}_6$	$Mo(PF_3)_6$	trans-Mo(N ₂) ₂ (dptpe) ₂	trans-Mo(N ₂) ₂ {(4-C ₆ H ₄ OMe) ₂ PCH ₂ CH ₂ P(4-C ₆ H ₄ OMe) ₂ }	$trans-Mo(N_2)_2\{(4-C_6H_4Me)_2PCH_2CH_2P(4-C_6H_4Me)_2\}_2$	$trans-Mo(N_2)_2(dppe)_2$	trans-Mo(N ₂) ₂ {(4-C, H ₄ Cl) ₂ PCH ₂ CH ₂ P(4-C, H ₄ Cl) ₂ } ₂	$lrans-Mo(N_2)_2\{(4-C,H_4CF_3)_2PCH_2CH_2P(4-C,H_4CF_3)_2\}_2$	<i>trans</i> -Mo(N ₂) ₂ {(3-C ₆ H ₄ Me) ₂ PCH ₂ CH ₂ P(3-C ₆ H ₄ Me) ₂ } ₂	$trans-Mo(N_2)_2(depe)_2$	$trans-Mo(N_2)_2(dppe)(depe)$	trans-Mo(N.) (PPh. MA)

^a The solvent is the ligand. ^b Not specified.

TABLE 27	
$^{95}Mo^{-14}N$	coupling constants

Compound	Solvent	<i>T</i> (K)	$J(^{95}\text{Mo}-^{14}\text{N})$ (Hz)	Ref.
CpMo(CO) ₂ (NO)	MeCN	293	46	116
$(Me_5Cp)Mo(CO)_2(NO)$	MeCN	343	46	116
$HB(Me_2Pz)_3Mo(CO)_2(NO)$	HCONMe ₂	423	44	116
[([9]aneN3)Mo(CO)3(NO)]BF4	H ₂ O	373	39	87

by both 95 Mo NMR and by 17 O NMR [39,55] in aqueous solutions of $[\text{MoO}_4]^{2-}$ enriched with 17 O. The coupling constant is 40 Hz.

(d) $^{95}Mo-^{14}N$ coupling

 95 Mo $^{-14}$ N spin–spin coupling has been found in {MoNO} 6 "piano stool" complexes [116] (Section E(viii)) with the general formula LMo(CO) $_2$ (NO), where L = Cp, Me $_5$ Cp, HB(Me $_2$ pz) $_3$, HB(pz) $_3$ and [9]aneN $_3$ (Table 27).

The splitting can be seen at room temperature for the Cp and Me_5Cp complexes in low viscosity solvents. Elevated temperatures are needed in all the other cases in order to resolve the triplet due to the coupling of ^{95}Mo with one ^{14}N (I=1) nucleus. It was not possible to observe a completely resolved 1:1:1 triplet since these complexes decompose at high temperatures (Fig. 24). The observed coupling constants are 44–46 Hz.

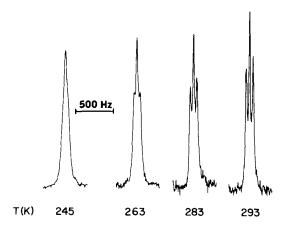


Fig. 24. Temperature dependence of the resolution of $^{95}\text{Mo}-^{14}\text{N}$ spin-spin coupling in CpMo(CO)₂(NO) in MeCN. Adapted from ref. 116, with permission.

(e) 95Mo-1H coupling

A coupling constant of 15 Hz has been found for ${}^{95}\text{Mo-}{}^{1}\text{H}$ spin-spin coupling for the bridging H atom in $(\text{Et}_4\text{N})[\text{HMo}_2(\text{CO})_{10}]$ at room temperature [105]. There are as yet no reports of ${}^{95}\text{Mo-}{}^{1}\text{H}$ spin-spin coupling for a terminal H atom.

(xii) Relaxation time studies

Both 95 Mo and 97 Mo are spin 5/2 nuclei and, as briefly discussed in Section A, their relaxation processes are expected [15] to be controlled by the quadrupolar mechanism. As seen in eqn. 1, both the longitudinal and transverse relaxation times, T_1 and T_2 , are inversely proportional to the linewidth $W_{1/2}$ and controlled by the magnitudes of the electric field gradient and the correlation time, τ_c . These influences are responsible for the wide range (0.4–4000 Hz) of observed 95 Mo linewidths, and consequently T_1 values varying from several seconds to microseconds are expected. In addition, since the ratio of the 95 Mo and 97 Mo nuclear quadrupole moments Q are known (Table 1), eqn. 1 requires $\{T_1(^{95}\text{Mo})/T_1(^{97}\text{Mo})\}^{1/2} = Q(^{97}\text{Mo})/Q(^{95}\text{Mo}) = 11.4$.

Table 28 lists measured T_1 (95 Mo) values, observed linewidths and T_2 values (designated T_2^*) derived from those linewidths [129,130]. Adequate signal-to-noise ratios are attained using the inversion recovery method (Fig. 25).

The longest T_1 observed is just over 7 s for Mo(CO)₆. For a strictly octahedral molecule, the electric field gradient, q, is zero and it is possible for relaxation processes other than the quadrupolar mechanism to become important. In particular, the spin rotation mechanism can be quite efficient, especially for nuclei with large chemical shift ranges [131]. This possibility has been tested [129] in a detailed study of the relaxation properties of the ⁹⁵Mo, ⁹⁷Mo, ¹⁷O and ¹³C nuclei in Mo(CO)₆ in CDCl₃ solution. An experimental estimate of τ_c , $8.5(\pm 0.1) \times 10^{-2}$ s, can be obtained from the measurement of $T_1(^{13}C)$ as a function of magnetic field strength (eqn. 3, Section C(vi)(b) provides an order-of-magnitude estimate only). The results (a) confirm the presence of a small, but non-zero ⁹⁵Mo quadrupole-coupling constant $e^2q_{zz}Q/h = 133 \pm 15$ kHz, which is in excellent agreement with an estimate obtained in the solid state [132], and (b) indicate that ⁹⁵Mo and ⁹⁷Mo relaxation is entirely quadrupolar and caused by rotational reorientation of the small permanent electric field gradient.

If quadrupolar relaxation determines the 95 Mo relaxation rates in Mo(CO)₆ with a long T_1 , then it can safely be assumed to dominate in molecules of lower symmetry. This is confirmed for a selection of molecules whose linewidths are greater than 20 Hz (Table 28) where there is good quantitative

TABLE 28 ⁹⁵ Mo relaxation times ^a and linewidths ^b

Compound	Conditions	T_1	$W_{1/2}$	T_2^{*c}
		(ms)	(Hz)	(ms)
Mo(CO) ₆	0.39 M, CDCl ₃ , 40°C	7010	0.9	340
$CpMo(CO)_3(CH_2C_6H_5)$	0.5 M, CHCl ₃	4.9	67	4.8
$K_4[Mo(CN)_8]$	0.5 M, H ₂ O	4.5	74	4.3
$H_2[Mo_3O_4(C_2O_4)_3(H_2O)_3]$	1 M in saturated			
	oxalic acid	0.69	466	0.68
$[Mo_2(O_2CBu^n)_4]^{-d}$	1 M, THF, 30°C	0.18	1720	0.19
[MoS4]2e	0.5 M, H ₂ O	5370	2.0	160
$[MoO_4]^{2-e}$	0.2 M, H ₂ O (pH 11), 30°C	1560	2.0	160
	2 M, H ₂ O (pH 11), 30°C	778	0.7	450
	1 M, (3 M NaCl,			
	H ₂ O (pH 9–12), 29°C) ^f	840	_	
$Mo(CO)_3(mes)$	0.5 M, CH ₂ Cl ₂	77.6	6	55
-	0.5 M, CDCl ₃	70.1	7	45
$Mo(CO)_3(p-xyl)$	0.5 M, CH ₂ Cl ₂	104	5	64
	0.5 M, CDCl ₃	86	5	64
$Mo(CO)_3(tol)$	0.5 M, CH ₂ Cl ₂	165	3	110
-	0.5 M, CDCl ₃	140	4	80
$Mo(CO)_5(PEt_3)$	0.5 M, neat PEt ₃	41.4	11	28.9
$Mo(CO)_5(PBu_3^n)$	0.5 M, neat PBu ₃ ⁿ	5.9	53	6.0
$Mo(CO)_3\{P(OEt)_3\}_3$	0.5 M, CH ₂ Cl ₂	268	3	110
cis-Mo(CO) ₄ (py) ₂	0.5 M, CDCl ₃	3.0	104	3.1

^a T_1 values were measured using the inversion recovery method on a JEOL FX-200 spectrometer operating at 13 MHz at 20°C using unlocked, non-spinning samples, unless otherwise noted. ^b Refs. 129 and 130. ^c Derived from $W_{1/2}$ values: see text. ^d Measured with the transverse probe described in Section C(vi)(d). ^e Locked, spinning sample. ^f Ref. 18.

agreement between the inversion recovery T_1 values and the linewidth T_2^* values, as required by eqn. 1. The compounds with a linewidth of less than 20 Hz listed in Table 28 exhibit T_2^* values consistently smaller than T_1 . This is an artifact of the experimental conditions (unlocked, non-spinning sample) chosen to facilitate the inversion recovery measurements, and which add up to 3 Hz to the observed linewidths. The derived T_2^* values are included in Table 28 as a qualitative guide only. However, the predictions of eqn. 1 qualitatively rationalize existing experimental data. Thus the experimental linewidths (Table 2, Section E(i)(b)) of the 95 Mo and 97 Mo resonances of the series $[\text{MoO}_{4-n}S_n]^{2-}$ (n=0,2,3,4) [53] are in qualitative agreement.

In general, narrow linewidths and long relaxation times are associated with small molecules of high symmetry (small q and τ_c) and broad lines and short relaxation times with a combination of large molecules or low site

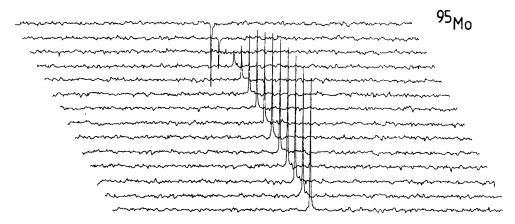


Fig. 25. 95 Mo inversion recovery $(180^{\circ} - \tau - 90^{\circ} - T)_n$ experiment for Mo(CO)₃(*p*-xyl) (0.5 M, CH₂Cl₂, 20°C). Spectral width, 5000 Hz; 16 K data points; 4992 points sampled; *T*. 500 ms; *n*, 200; accumulation time, 32 min. Reproduced from ref. 130, with permission.

symmetry (larger q or τ_c). Specific features of quantitative relaxation time measurements are listed below (Table 28):

- (a) Very long 95 Mo relaxation times of 5.4 and 1.6 s are observed for the tetrahedral molecules $[MoS_4]^{2-}$ and $[MoO_4]^{2-}$ in aqueous solution as expected from the high point symmetry. The relative magnitudes are not those expected from simple size considerations and are most likely related to the influence of hydrogen-bonding between coordinated oxo and solvent water leading to a longer correlation time. This effect also rationalizes the dependence of the T_1 value on $[MoO_4]^{2-}$ concentration.
- (b) Substitution of the more viscous solvent CDCl₃ for CH_2Cl_2 in arene molybdenum tricarbonyl species shortens T_1 values, as expected (eqns. 1 and 3).
- (c) An increase in the effective size of Mo(CO)₅(PR₃) by substituting $R = Bu^n$ for R = Et increases τ_c and reduces T_1 from 41.4 to 5.9 ms. On the other hand, although Mo(CO)₃{P(OEt)₃}₃ is considerably larger than these molecules, T_1 is 268 ms, pointing to a much smaller q.

Besides being useful as a probe of symmetry and correlation times, relaxation time studies reveal optimum acquisition parameters and sample conditions (solvent, temperature) for the collection of ⁹⁵Mo spectra. This is particularly important for "difficult" samples, i.e. those exhibiting broad lines which must be measured at low concentrations.

(xiii) Experiments with the enzyme xanthine oxidase

An obvious application for ⁹⁵Mo NMR would be as a probe for the diamagnetic states of the various molybdo–enzymes and their cofactors [7].

Such an application has prompted detailed examination of species containing the cis-[MoVIOS]²⁺ and -[MoO₂]²⁺ structural units (Tables 5 and 6) which appear [78,79] to be present in certain of those enzymes which feature a mononuclear molybdenum active site.

Milk xanthine oxidase (300 000 daltons, α_2 , 2 Mo, 4 Fe₂S₂, 2 FAD) whose oxidized active and inactive (desulfo) forms are thought to feature the above structural units, can be isolated in large quantities. A series of measurements on both forms of the enzyme (including samples enriched with ⁹⁵Mo) have been undertaken independently in the authors' laboratories [133,134]. A resonance has not been observed to date. To assist further development, one of the experiments is outlined. A sample of xanthine oxidase (1.0 g; enriched to 75 atom % ⁹⁵Mo; 5.1×10^{-4} M ⁹⁵Mo in active enzyme; 1.8×10^{-4} M in desulfo enzyme) was examined using the transverse probe described in Section C(vi)(d). Sensitivity testing indicated that a resonance of linewidth < 1500 Hz was detectable at 5×10^{-4} M ⁹⁵Mo. In three separate accumulations, a total chemical shift range of -380 to +3400 ppm was scanned.

The combined experiments [133,134] suggest that (a) the linewidth $W_{1/2}$ for the active form of the enzyme is > 1500 Hz under the present conditions or (b) its chemical shift lies outside the -380 to +3400 ppm range suggested by the model compounds.

A broad signal might be expected for Mo sites of low symmetry in a large molecule such as xanthine oxidase. Indeed, if the correlation time, τ_c , is assumed to be ca. 10^{-8} to 10^{-9} s for the large molecule, it might be suggested that a 95 Mo resonance for xanthine oxidase in solution will be unobservable according to eqn. 1. However, recent studies [17(b), 26(b)] of other quadrupolar nuclei, 43 Ca (I=7/2) and 17 O (I=5/2), in proteins of molecular weight up to 20000 d have demonstrated that it is difficult to estimate a realistic correlation time, τ_c , for the local environment of the observed nucleus, and that it is not possible to calculate τ_c assuming a rigid spherical model (eqn. 3). These recent studies have clearly demonstrated that NMR signals of quadrupolar nuclei bound to macromolecules can be observed in cases where simple predictions using eqns. 1 and 3 suggest that linewidths would be too broad for detection.

Nevertheless, the most promising biological systems for ⁹⁵Mo study are the lower molecular weight cofactors [7], FeMoco and Moco, provided that diamagnetic samples of sufficient concentration can be generated.

F. TUNGSTEN-183 NMR

Early investigations concentrated on the solid state and aimed to determine μ by direct observation of the nucleus in metallic tungsten [135], tungsten-cobalt alloys [136] and tungsten bronzes [137]. This aim was

frustrated by the need to know the magnitude of the Knight shift, which could not be calculated accurately. Initial direct measurements in solution were reported in 1975 by Banck and Schwenk [138] who examined liquid WF₆, aqueous [WO₄]²⁻ and WCl₆ in CS₂. However, indirect double and triple resonance techniques had been used earlier to obtain chemical shifts [32,139,140] and such techniques remain valuable [33,141].

The sensitivity of commercial spectrometers has steadily increased in recent years, and direct observation of the low-frequency resonance of the insensitive 183 W (I=1/2) nucleus (Table 1) is becoming more routine. At the present time the chemical shifts of about 140 tungsten compounds (mainly W(0), W(II) and W(VI) species including about 50 polyoxotung-states) have been recorded in solution. The reported chemical shift range covers some 11 000 ppm ($W_2(O_2CCF_3)_4$, 6760; WCp₂H₂, -4663 ppm).

The sharp lines in ¹⁸³W NMR spectra enable spin–spin couplings to other kinds of nuclei and to other ¹⁸³W nuclei to be detected. Such couplings provide a powerful technique for assigning the stereochemistries of iso- and heteropolytungstates (Section F(i)). The recent successful application of two-dimensional NMR techniques to investigating ¹⁸³W resonances at natural abundance [149] promises to play a major role in understanding heteropolytungstate anions (Section F(i)(b)).

(i) Tungstate and the polyoxotungstates

The 183 W chemical shift for the tetrahedral $[WO_4]^{2-}$ anion shows little dependence on concentration or counterion [138]. The chemical shift for 2.31 molal Na₂[WO₄] shows a small temperature dependence (ca. 0.16 ppm K⁻¹ in the range 274–332 K). Relaxation times for this anion have not been reported, although in comparison with other W(VI) species of high symmetry (Section F(ii)), they are likely to be greater than 5 s.

The rich and subtle chemistry of isopoly- and heteropolytungstate species based on the $[WO_4]^{2-}$ anion has attracted continuing interest [6]. The potential of ^{183}W NMR for structural characterization of these compounds was first demonstrated by Baker et al. [142] in 1979 and recently progress has been rapid. For many individual species, rearrangements involving W-sites are slow on the ^{183}W NMR time scale and structurally inequivalent W atoms exhibit separate narrow resonances. Consequently, relative signal intensities and coupling patterns due to spin–spin interactions with other magnetic nuclei (in particular, with other ^{183}W nuclei via $^{183}W-O-^{183}W$ units: $N(^{183}W)=14.40$ atom % (Table I)) can allow unambiguous assignment of structurally inequivalent W atoms.

Data for polyoxotungstate species are collected in Table 29. Observed chemical shifts for diamagnetic species range from +58.9 ppm for $[W_6O_{19}]^{2-}$

TABLE 29
Polyoxotungstates

0				
Anion	Solvent	Chemical shift a.b.c (ppm)	Comments	Ref.
$[W_6O_{19}]^{2-}$	HCONMe,	+ 58.9		143
[(PhPO ₃) ₂ W ₅ O ₁₅] ⁴⁻	CD,CN	-155.9	1:2:1 triplet; ² J _{W-O-P} , 1.95 Hz	144
$\alpha - [PW_{12}O_{40}]^{3} -$	$D_2\tilde{0}$	- 99.4	doublet: $^2J_{W-\Omega-P}$, 1.17 Hz	145
$\alpha - [AsW_{12}O_{40}]^{3}$	$HCONMe_2/$			
	$(CD_3)_2CO$	-64.6		146
$\alpha - \{\mathrm{SiW_{12}O_{40}}\}^{4}$	D_2O	-103.8		145
	$CD_3CN/$			
	HCONMe ₂	- 92.1		143
eta-[SiW ₁₂ O ₄₀] ⁴⁻	D_2O	-109.7(1), -114.7(2), -129.8(1)	$^{2}J_{W-O-W}$, ca. 8 and 20 Hz	147
	D_2O	-109.1(1), $-114.0(2)$, $-129.2(1)$	$^{2}J_{W-O-W}$, 8.3 and 20.5 Hz	146
	CD,CN/			
	HCONMe,	-103.5(1), -104.0(2), -120.5(1)		143
α -{GeW ₁₂ O ₄₀] ⁴⁻	D_2O	-81.9		145
	$\overline{\mathrm{D_2O}}$	- 79.8		146
β -[GeW ₁₂ O ₄₀] ⁴⁻	$\overline{D_2}$ O	-89.5(1), -91.6(2), -104.0(1)	$^{2}J_{W-O-W'}$ 8.3 and 20.3 Hz	147
$lpha ext{-} [\mathrm{BW}_{12} \mathrm{O}_{40}]^{5-}$	D_2O	-130.8		145
α - $\{ZnW_{12}O_{40}\}^{6}$	D_2O	- 95.8		145
$lpha$ -[(H $_2$)W $_{12}$ O $_{40}$] 6 -	D_2O	-113.0		145
α - $[(D_2)W_{12}O_{40}]^{6-}$	D_2O	-120.0		145
β -[(H ₂)W ₁₂ O ₄₀] ⁶⁻	D_2O	-107.2(1), $-120.9(2)$, $-130.6(1)$		147
α -[(H ₂)W ₁₂ O ₃₉ F] ⁵⁻	D_2O	-94.3(1), $-104.1(2)$, $-108.6(1)$	$^{1}J_{W-F}$, 32 H _z ; $^{2}J_{W-O-W}$, ca. 5 and 22 Hz	147
α -{CoW ₁₂ O ₄₀ } ⁶⁻	D_2O	– 882 °		148
$\alpha ext{-} [\text{CoW}_{12} \text{O}_{40}]^{5-}$	D_2O	-1955 °		148
$\alpha - [PW_{11}O_{39}]^{7}$	D_2O		Li * salt with added LiClO ₄ (0.5 M);	
			$^2J_{W-O-P}$. 1.20 to 1.71 Hz	145
		-134.5(2), -154.5(2)		
	D_2O	-97.3(2), -102(2),	Na $^+$ salt; $^2J_{W-O-P}$, 0.9 to 2.1 Hz,	149
		-108.9(2), -116.6(1),	$^{2}J_{w-O-w}$, 5.6 to 10.1 and 16.8 to 27.8 Hz	
	D_2O	-98.1(2), $-98.8(2)$.	Li * salt: ² J _{w-O-P} , 0.9 to 1.8 Hz	149
		-105.0(2), $121.4(1)$, $-132.4(2) -152.2(2)$		

$\alpha - [SiW_{11}O_{39}]^{8-}$	D ₂ O	-100.9(2), -116.1(2), -121.3(1), -127.9(2), -143.2(2), -176.2(2)		142, 145
	D ₂ O	-100.8(2), -116.1(2), -121.3(1), -127.9(2), -143.2(2), -176.1(2)	A second set of peaks (ca. 9% of main spectrum) occurs at -139.8, -142.1, -144.7, -145.7, -166.7 ppm. An expected sixth	149
			peak is obscured by the main spectrum.	
α -[PbPW ₁₁ O ₃₉] ⁵	$D_2O(60^{\circ}C)$	-74.4(2), $-82.7(2)$, $-102.8(2)$,	$^{2}J_{W-O-P}$, 0.95 to 2.20 Hz	149
$\alpha - \{GaW_{11}O_{30}\}^{9}$	D,0 species 1	species 1: $-16.2(1)$, $-101.2(2)$		
		-126.9(2), -133.8(2), -137.3(2),		149
		-155.9(2)		
	species 2	species 2: $-6/.4$, -81.3 , $-9/.1$, -119.2 , -125.5 , -185.0		
α -[GeGa(OH)W ₁₁ O ₃₉] ⁶	D_2O	-37.2(2), $-87.2(2)$, $-115.1(2)$,		149
		-118.6(1), -123.7(2), -184.9(2)		
α -[GaGe(OH)W ₁₁ O ₃₉] ⁶⁻	D_2O	-51.6(2), $-82.3(2)$, $-118.8(2)$,		149
		-122.7(2), $-127.5(1)$, $-225.0(2)$		
$[Ce(PW_{11}O_{39})_2]^{11}$	D_2O	+349, +193, -114.8 -116.7, -141.5		150
$[Ce(PW_{11}O_{39})_2]^{10-}$	D_2O	-105.8, -110.3, -116.6, -120.5,		150
-\$r \(\) \(-138.0, -142.3, -152.3, -175.7	21 104-141	161
α -[11FW ₁₁ O ₄₀]	CH3CN/CD3CN	-37.2(2), $-92.0(2)$, $-101.9(1)$, $-106.7(2)$, $-109.2(2)$, $-118.0(2)$	$^{J_{W-O-P}}$: 1.0 to 1.6 Hz, $^{2J_{W-O-W}}$, 9 ± 2 and 20 ± 4 Hz	151
α -{CITiPW ₁₁ O ₃₉ } ⁴⁻	HCOMe ₂ /MeCN-d ₃	-88.3(1), -92.3(2), -96.5(2),	:	151
		-108.3(2), $-108.5(2)$, $-108.8(2)$		
α -{(CpFe(CO) ₂ Sn)PW ₁₁ O ₃₉] ⁴⁻	D_2O	-106.5(2), -108.8(2), -123.4(1),		151
		-127.4(2), -127.9(2), -192.7(2)		

TABLE 29 (continued)

Anion	Solvent	Chemical shift a.b.c	Comments	Ref.
α -[CpTiPW ₁₁ O ₃₉] ⁴⁻	MeCN-d ₃	-78.3(2), $-93.6(1)$, $-94.8(2)$, $-100.4(2)$, $-112.3(2)$, $-117.7(2)$	$^{2}J_{\text{W-O-P}}$, ca. 1Hz	143
	HCOMe ₂ /MeCN-d ₃		$^{2}J_{\text{W-O-P}}$, ca. 1 Hz	143
$[T_{12}PW_{10}O_{40}]^{7-}$	H ₂ O/D ₂ O (35°C)	$-73.7(2)$, $-112.5(2)$, $-125.5(2)$, $^2J_{\rm W-O-P}$, 1.19 to 1.75 Hz: $-127.0(2)$, $-143.0(2)$ $^2J_{\rm W-O-W}$, 6.4 to 7.8 and 1 21.0 Hz	2). ${}^2J_{W-O-P}$, 1.19 to 1.75 Hz; ${}^2J_{W-O-W}$, 6.4 to 7.8 and 1.75 to 21.0 Hz	152
[(CpFe(CO) ₂ Sn) ₂ PW ₁₀ O ₃₈] ⁵⁻	H_2O/D_2O (60°C)	-108.1(2), $-127.8(2)$, $-146.6(2)$, $-209.0(2)$, $-218.7(2)$		152
$\alpha [\mathrm{P,W_{18}O_6,}]^{6-}$	D,0	-128.1(1), -173.8(2)	$^2J_{\rm W-O-P}$, 1.17 and 1.61 Hz	142, 145, 153, 154
β - $[P_2W_{18}O_{62}]^{6-}$	D20	-111.6(1), -131.1(1) -171.1(2), -191.2(2)	$^2J_{\rm w-O-P}^{\rm m}$, 1.17 to 1.61 Hz	145, 153, 154
α -[As,W ₁ gO ₆ ,] ⁶ -	$D_{2\Omega}$	-121.8(1), -145.3(2)		154
γ-[As,W ₁₈ O ₆ ,] ⁶ -	D,0	-110.0(1), -166.0(2)		154
$\alpha - [P_2W_{12}Mo_6O_{62}]^{6-}$	$\overline{D_20}$	-130.3(1), -166.6(1), -179.9(1) $^2J_{W-Q-P}$, 1.17 to 1.61 Hz	154
$\alpha - [P_2W_{15}Mo_3O_{62}]^{6}$	$\overline{D_2O}$	$-134.1(1)$, $-179.3(2)$, $^2J_{W-O-P}$, 1.10 to 1.61 Hz $-180.1(2)$	$^2J_{W-O-P}$, 1.10 to 1.61 Hz	154
"polymeric" 6:1 tungstophosphate	D_2O	-207.6(2), -209.7(2), -275.5(1), -287.8(1)	$^2J_{W-O-P}$, 1.17 to 1.47 Hz	154
$\alpha_2 - [P_2W_1, O_{61}]^{10} -$	D ₂ O	-127.9(2), -140.8(2), -159.6(2), -175.8(2), -179.6(1), -218.9(2), -222.7(2), -255.0(2),	² J _{W-O-P} , 0.95 to 2.20 Hz	145, 153

145		183		155	,		156)		
$^2J_{W-O-P}$, 1.17 to 2.05 Hz				$^2J_{\rm w}$ o a for the resonances at 155	-90.3 and -128.4 ppm are	1.1 and 1.6 Hz respectively	-			
-142.0(2), -182.5(2),	- 104.4(1), - 220.0(2), - 221.6(2), - 225.4(2), - 244.8(2)	7 resonances ca33 to	ca192 (2:4:4:4:4:2:1)	-90.3(1), -105.4(2),	-115.0(2), -128.4(2),	-134.2(2)	-150.4(1), -160.5(2),	-162.0(2), -180.0(2),	-185.0(2), -238.2(2),	- 243 4(2) - 100 EAC -
D_2O		Me ₂ SO-d ₆		D_2O			D ₂ O (40°C)			
α_2 -{ $P_2W_{17}VO_{62}$] 7 -		$[As_2W_{21}O_{69}(H_2O)]^{6-}$		$B-[P_2W_{18}Zn_4(H_2O)O_{68}]^{10}$;	$B-[P_4W_{30}Zn_4(H_2O)_2O_{112}]^{16} - D_2O(40^{\circ}C)$			

^a All shifts are relative to external aqueous Na₂WO₄. However, different concentrations and pH of this reference have been used by various authors. Correction of tabulated chemical shifts relauve to 2M Na₂WO₄ in D₂O at apparent pH 11 leads to minor changes only. b Values in parentheses are the relative intensities of the W signals. Linewidths are generally <1 Hz except for the paramagnetic anions α -[CoW₁₂O₄₀]⁶⁻ (34 Hz) and α -[CoW₁₂O₄₀]⁵⁻ (14 Hz). to -244.8 ppm for α_2 - $[P_2W_{17}VO_{62}]^{7-}$ and for paramagnetic species from +349 ppm for $[Ce(PW_{11}O_{39})_2]^{11-}$ to -1955 ppm for α - $[CoW_{12}O_{40}]^{5-}$. Linewidths are generally <0.5 Hz except in unusual circumstances (vide infra).

The only isopolytungstate examined to date is $[W_6O_{19}]^{2-}$. A single resonance is observed [143] consistent with O_h symmetry in solution.

A single fluxional polyoxotungstate, $(Bu_3^nNH)_4[(PhPO_3)_2W_5O_{15}]$ has been reported [144]. The anion has idealized C_2 symmetry (Fig. 26) in the solid state and three signals of relative intensity 2:2:1 modified by complex $^{183}W^{-31}P$ coupling are predicted for a static structure in solution. However,

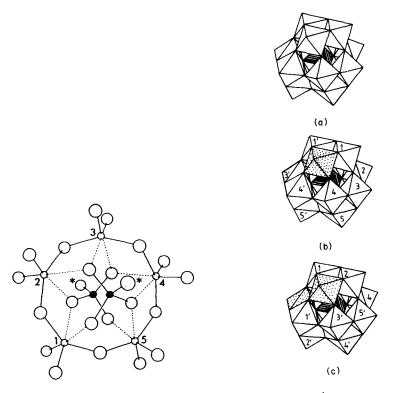


Fig. 26. Ball-and-stick model of the anion $[(PhPO_3)_2W_5O_{15}]^{4-}$: small circles, W; dark circles, P; large circles, O; starred circles, C of phenyl groups. Reproduced from ref. 144, with permission.

Fig. 27. Condensed polyhedron models for: (a) Keggin anions, α -[$X^{n+}W_{12}O_{40}$]⁽⁸⁻ⁿ⁾⁻. The heteroatom X occupies the central tetrahedral site (hatched), when $X^{n+} = H_2^{2+}$ or D_2^{2+} , the protons or deuterons lie off-center on opposite edges of the tetrahedron; (b) α -[$X^{n+}W_{11}O_{39}$]⁽¹²⁻ⁿ⁾⁻. The spotted octahedron is missing. Pairs of W atoms (e.g. 1,1') are structurally equivalent. The unique W atom, 6, is obscured: (c) α -[Ti₂PW₁₀O₄₀]⁷⁻ and α -[{CpFe(CO)₂Sn}₂PW₁₀O₃₈]⁵⁻. The Ti and Sn atoms occupy the spotted octahedral sites.

the ¹⁸³W spectrum observed in dry CH₂Cl₂ or in wet MeCN consists of a single line split into a 1:2:1 triplet by coupling to two equivalent ³¹P nuclei (*J*, 1.95 Hz). The ¹⁷O spectrum also indicates the presence of intramolecular processes. The ring of five W atoms is a topological analogue of cyclopentane, and an exchange mechanism analogous to the facile interconversion of the "envelope" (four coplanar atoms and one atom out of the plane) conformers of cyclopentane via a ring pseudorotation is proposed [144] in the present case.

(a) Hetero-12-tungstate anions

The isomorphous series $[X^{n+}W_{12}O_{40}]^{(8-n)-}$ exhibits the so-called Keggin structure which includes a number of isomeric forms $(\alpha, \beta, \gamma, \delta, \text{ and } \epsilon)$. The α -form (Fig. 27(a)) has T_d point symmetry and consists of four equivalent W_3O_{13} -units (some of the O atoms are shared by different units). The β -form has one of the W_3O_{13} -units rotated by 60°. Similar rotations of two, three and four units give rise to the γ , δ and ϵ isomers [157]. The heteroatom, X^{n+} , occupies the central tetrahedral site. ¹⁸³W NMR studies have so far involved the α - and β -forms only.

A single sharp resonance arises from the twelve equivalent W atoms of an α -isomer unless, of course, X is a magnetic nucleus and $^{183}W-O-X$ spin-spin coupling is resolved. The magnitude of the ^{183}W chemical shifts of a series of α -anions (Table 29) varies linearly with the wavelength of the electronic absorption maximum of lowest energy [145] (Fig. 28). Such a relationship is expected if the localized paramagnetic term of the Ramsay equation [158,159] dominates the shielding and if the absorption maximum is a measure of $\Delta\epsilon$, the average energy of excitation from the ground state to excited states which can mix into the ground state (see Section G(i)(b)). For this series of α -[Xⁿ⁺W₁₂O₄₀]⁽⁸⁻ⁿ⁾⁻ anions, it is apparent that the anisotropy of the electric field around the ^{183}W nucleus is constant and that the $\Delta\epsilon$ term controls the shielding.

Similar correlations have been observed previously in 59 Co and 51 V shielding studies for octahedral d^6 complexes and rationalized by crystal field theory [160]. Figure 28 does not show a monotonic dependence of $\delta(^{183}\text{W})$ with the oxidation state of X and attempts to correlate overall anionic charge and resultant electron density with ^{183}W nuclear shielding appear to be invalid [143].

An interesting species is $H_5[H_2W_{12}FO_{39}]$. The anion has an α -type structure with the fluorine atom occupying one of the vertices of the central X tetrahedral site. The effective point symmetry is C_{3v} and the ¹⁸³W spectrum shows three signals in the expected 1:2:1 intensity ratio [147]. In this case ¹⁸³W-O-¹⁸³W coupling is observed and the ${}^2J_{W-O-W}$ coupling constants fall into two distinct classes: (a) 5 ± 1 Hz between W atoms of edge-sharing

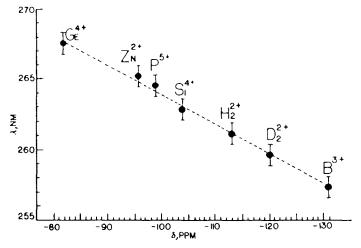


Fig. 28. Variation of $\delta(^{183}\text{W})$ for α -[Xⁿ⁺ W₁₂O₄₀]⁽⁸⁻ⁿ⁾⁻ with the wavelength of their lowest energy optical absorption maxima. Reproduced from ref. 145, with permission.

octahedra and (b) 22 ± 1 Hz between W atoms of corner-sharing octahedra. These observations are of particular importance in assigning ¹⁸³W resonances to separate W atoms in a variety of structures in the polyoxotung-states. The $^2J_{W-O-W}$ values are dependent on W-O-W bond angles for the limited number of cases where precise correlation has been attempted [147]. More detailed examples of the application of $^2J_{W-O-W}$ values in structural correlations are given later (Section F(i)(b)).

The more highly shielded 183 W nuclei observed in the paramagnetic α -[Co^{III}W₁₂O₄₀]⁵⁻ and α -[Co^{III}W₁₂O₄₀]⁶⁻ anions [148], are a result of a contact contribution to the isotropic chemical shifts. These shifts have been interpreted in terms of direct delocalization of cobalt spin density on to the W atoms [161]. 183 W NMR has obvious potential as a probe in such species.

The β -[Xⁿ⁺W₁₂O₄₀]⁽⁸⁻ⁿ⁾⁻ anions exhibit C_{3v} point symmetry and so three ¹⁸³W resonances in the intensity ratio 1:2:1 are expected. This is indeed found for the limited number of β -anions so far examined [143,146,147]. Spin-spin coupling has been resolved for β -[XW₁₂O₄₀]⁴⁻ (X = Si, Ge) [140,146,147] and the coupling constants ${}^2J_{W-O-W}$ of 8 ± 1 and 20 ± 1 Hz allow, by analogy with H₅[H₂W₁₂FO₃₉], unambiguous assignment of the inequivalent W atoms.

(b) Heteropoly-11-tungstate anions

If one or more of the W-centered octahedral units are removed from a Keggin anion, "lacunary" anions are formed. For example, removal of a $[WO]^{4+}$ unit from α - $[X^{n+}W_{12}O_{40}]^{(8-n)-}$ results in α - $[X^{n+}W_{11}O_{39}]^{(12-n)-}$

(Fig. 27(b)) which features one structurally unique W atom and five inequivalent pairs of W atoms as imposed by the C_s point symmetry. The structural integrity of these species ($X = P^{5+}$, Si^{4+}) in aqueous solution is demonstrated [142,145,149] by the observation of six separate ¹⁸³W resonances in the intensity ratio 2:2:2:1:2:2 (Fig. 29(a)). Each ¹⁸³W resonance in the phosphorus species is a doublet due to ¹⁸³W-O-³¹P coupling and satellites due to ¹⁸³W-O-¹⁸³W coupling are clearly visible.

Brevard [149] has demonstrated that the assignment of ¹⁸³W signals to individual W atoms can be straightforward when two-dimensional (2D) NMR techniques are used to establish the connectivity of various W atoms via their ¹⁸³W-O-¹⁸³W couplings. The work employed the 2D COSY 90 and 2D INADEQUATE sequences. The 2D COSY 90 experiment for Na₇[PW₁₁O₃₉] in D₂O is represented as a contour plot in Fig. 29(b). The larger contours on the diagonal represent the normal 1D spectrum, while the off-diagonal contours (about 14% of the main signal) result from ¹⁸³W-O-¹⁸³W coupling between the various edge-and corner-shared octahedra.

Using the atom numbering system of Fig. 27(b) it is clear that the following coupling patterns should be observed as off-diagonal peaks in the contour plot: W_1 coupled to W_3 , W_2 ; W_2 coupled to W_1 , W_3 , W_6 ; W_3 coupled to W_1 , W_2 , W_4 , W_5 ; W_4 coupled to W_3 , W_5 ; W_5 coupled to W_3 , W_4 , W_6 ; W_6 coupled to W_5 , W_2 . Systematic examination of Fig. 29(b) shows that all connectivities are present for $Na_7[PW_{11}O_{39}]$. In addition, the fact that $^{183}W-O^{-183}W$ coupling via corner-sharing of octahedra ($^2J_{W-O-W}$, 16.8–27.8 Hz; e.g. W_6-O-W_5) is stronger than that via edge-sharing ($^2J_{W-O-W}$, 5.6–10.1 Hz; e.g. W_6-O-W_2) is confirmed (vide supra: Section F(i)(a)). The coupling patterns were confirmed by the 2D INADEQUATE sequence [149].

Each experiment takes about 30 h but the unambiguous identification of the coupling patterns is worth the expenditure of spectrometer time. The power of these and other 2D methods will find increasing use in the structural characterization of the polyoxotungstates. Consideration could be given to isotope enrichment with ¹⁸³W to improve the sensitivity of the 2D methods.

Previous assignments of W atoms in the α -[Xⁿ⁺W₁₁O₃₉]⁽¹²⁻ⁿ⁾⁻ series were based partially on the premise that W atoms closest to the vacancy give rise to the most deshielded ¹⁸³W resonance signals [145]. Although this can be the case [149] it is not necessarily so and other structural factors must be considered. For example, the resonances due to W₁, W₄ and W₅ in α -[PW₁₁O₃₉]⁷⁻ are deshielded markedly when the cation changes from Na⁺ to Li⁺. It is suggested [149] that the cations occupy the "vacancy" and differentially modify the anionic structures. In Na₉GaW₁₁O₃₉, two species are detected. These are assigned tentatively to the lacunary α -[GaW₁₁O₃₉]⁹⁻ anion and to [NaGaW₁₁O₃₉]⁸⁻ (with an associated Na⁺ ion).

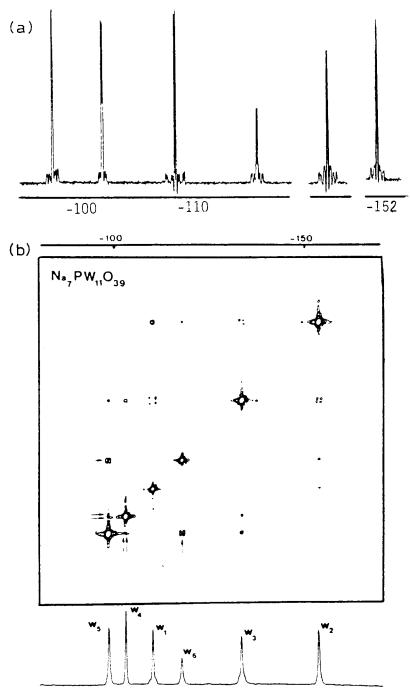
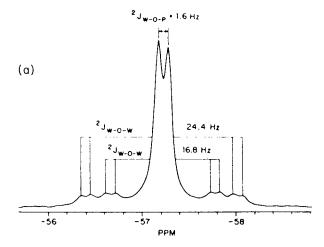



Fig. 29. (a) 183 W NMR spectrum of Na₇[PW₁₁O₃₉] (1 M in D₂O; 16.67 MHz; T, 333 K). Satellite peaks due to 183 W-O- 183 W and 183 W-O- 31 P coupling are clearly visible after Gaussian deconvolution of the FID: (b) 183 W 2D COSY 90 contour plot. Conditions as for (a) except T, 303 K. Adapted from ref. 149, with permission.

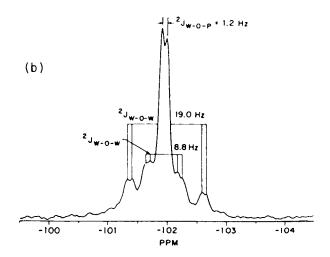
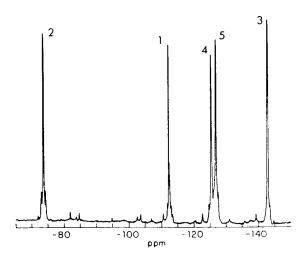
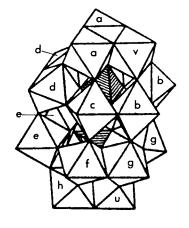


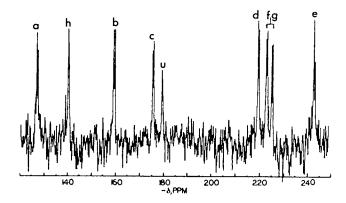
Fig. 30. Expanded regions of the ^{183}W spectrum of α -(Bu $_4^nN$) $_5$ [TiPW $_{11}O_{40}$] shown in Fig. 2. The expansions show the ^{183}W -O- ^{31}P couplings and ^{183}W -O- ^{183}W couplings of two different isotopomers: (a) ^{183}W resonance 1; (b) ^{183}W resonance 6. Reproduced from ref. 151, with permission.

The vacancy is certainly occupied in species such as α - $[Y^{m+}PW_{11}O_{39}]^{(7-m)-}$ $(Y^{m+}=TiO^{2+}, TiCl^{3+}, CpTi^{3+}, CpFe(CO)_2Sn^{3+})$. Qualitative features [151,162] of the spectra are similar to those of $[PW_{11}O_{39}]^{7-}$ and analysis of the W-O-W fine structure observed at the base




Fig. 31. ¹⁸³W NMR spectrum of α -Li₇[Ti₂PW₁₀O₄₀] in H₂O/D₂O, (T, 35°C). The numbering system is that of Fig. 27(c). Reproduced from ref. 162, with permission.

of the major peaks (Figs. 2, 27(b) and 30) in α -(Bu $_4^n$ N) $_5$ [TiPW $_{11}O_{40}$] allow assignment of the individual resonances, assuming (Section F(i)(a)) that ${}^2J_{W-O-W}=9\pm2$ Hz and ${}^2J_{W-O-W}=20\pm4$ Hz, respectively, correspond to edge- and corner-sharing between two tungsten-centered octahedra of oxygen atoms. The method is restricted if there is overlap of resonances, as in (Bu $_4^n$ N) $_5$ [ClTiPW $_{11}O_{39}$] [151].


Disubstitution of a Keggin anion leads to the possibility of five structural isomers of C_s (two cases), C_1 , C_2 and C_{2v} point symmetries. That the C_2 isomer (Fig. 27(c)) is present in the α -[Ti₂PW₁₀O₄₀]⁷⁻ and α -[{CpFe(CO)₂Sn}₂PW₁₀O₃₈]⁵⁻ anions is proven by the observation of five resonances of equal intensity (Fig. 31). A structural assignment [162] based on the $^2J_{W-O-W}$ coupling constants was possible and confirmed by a 2D-INADEQUATE experiment which clearly substantiated the proposed connectivities.

(c) Heteropoly-18-tungstates and related species

The structures of these anions are derived formally from those of the Keggin anions by removal of a W_3O_9 -unit followed by fusing of two of the resulting fragments. The structure of α - $[P_2W_{18}O_{62}]^{6-}$ is shown in Fig. 32(a). Note the tetrahedral sites occupied by the P atoms. The β -isomer is derived by rotation by 60° of one of the W_3 caps. The ¹⁸³W NMR spectra of the α -and β - $[P_2W_{18}O_{62}]^{6-}$ isomers in D_2O exhibit the two (1:2) and four (1:1:2:2) resonances respectively predicted from the static solid-state structures [142,145,153]. Each ¹⁸³W nucleus is coupled to one ³¹P nucleus.

(a)

(b)

Fig. 32. (a) Condensed polyhedron model of the Wells–Dawson anion, α - $[P_2W_{18}O_{62}]^{6-}$. The P atoms occupy the hatched tetrahedral sites. The structure of α_2 - $[P_2W_{17}O_{61}]^{10-}$ is derived by removal of the $[WO]^{4+}$ unit associated with site v; (b) ¹⁸³W NMR spectrum of α_2 -Na₁₀ $[P_2W_{17}O_{61}]$ (0.6 M in D₂O; 3.75 MHz). The labels are those of (a). Reproduced from ref. 145, with permission.

The 183 W NMR spectra of the α -[As $_2$ W $_{18}$ O $_{62}$] $^{6-}$ and γ -[As $_2$ W $_{18}$ O $_{62}$] $^{6-}$ ions both consist of two resonances in the ratio 1:2. The large downfield and upfield shifts of the resonances in the γ -isomer are consistent with a 60° rotation of both the W $_3$ caps in the α -isomer [154].

 unique W atom in the opposing W_3 capping unit. When a $[VO]^{3+}$ unit is inserted into the vacancy v to yield α_2 - $[P_2VW_{17}O_{62}]^{7-}$ the spectrum is similar to that of α_2 - $[P_2W_{17}O_{61}]^{10-}$ except that two of the signals are missing. It is suggested [145] that the nuclear quadrupole moment of ^{51}V (I=7/2) provides a mechanism for the rapid relaxation of certain ^{183}W nuclei (labelled a and b in Fig. 32(a)) which broadens their resonances beyond detection. Unambiguous confirmation of these assignments would be provided by 2D methods which would establish the connectivities of the W atoms.

(d) Trivacant heteropolytungstate derivatives

Removal of $[W_3O_6]^{6+}$ units from $[PW_{12}O_{40}]^{3-}$ and $[P_2W_{18}O_{62}]^{6-}$ anions generate [163,164] the so-called trivacant anions $[PW_9O_{34}]^{9-}$ and $[P_2W_{15}O_{56}]^{12-}$. Reaction of β - $[PW_9O_{34}]^{9-}$ with ions M^{2+} (M=Co, Cu, Zn) allows isolation of $K_{10}[P_2W_{18}M_4(H_2O)_2O_{68}]\cdot 20H_2O$ [155]. The observed solid-state structure of the anion (Fig. 33(a)) is of C_{2h} point symmetry and features two $[PW_9O_{34}]^{9-}$ units acting as ligands to a central array of four M-centered octahedra. The ¹⁸³W NMR spectrum of the Zn^{2+} derivative exhibits five resonances of relative intensities 1:2:2:2:2:2, consistent with the presence of the same structure in aqueous solution.

A similar synthesis [156] based upon $[P_2W_{15}O_{56}]^{12}$ produces $Na_{16}[P_4W_{30}M_4(H_2O)_2O_{112}]$ whose solid-state structure also features an anion of C_{2h} symmetry (Fig. 33(b)). The ¹⁸³W NMR spectrum of the Zn²⁺ derivative consists of eight resonances of relative intensity 1:2:2:2:2:2:2:2:2 and, in conjunction with ³¹P NMR, strongly suggests the presence in solution of the isomer shown in Fig. 33(b). There are in fact 16 possible isomeric forms of which four have C_{2h} point symmetry.

(e) General comments

The 183 W chemical shifts in the polyoxotungstates are dependent on factors such as ionic strength of the solutions. Detailed studies on α - $[SiW_{12}O_{40}]^{4-}$, α - $[PW_{12}O_{40}]^{3-}$ and α - $[P_2W_{18}O_{62}]^{6-}$ showed that the 183 W chemical shifts were not sensitive to the pH (pD) of the solution but increases in ionic strength (including that due to an increase in concentration of the polyoxotungstate itself) caused upfield chemical shifts of ca. 1 ppm. The shift is not necessarily the same for all signals [145] and, in some cases, changes in ionic strength can be used to shift overlapping 183 W resonances differentially to achieve better dispersion of the signals [145]. The chemical shifts are often counterion dependent, a fact which must be carefully considered when assigning 183 W resonance signals to separate W atoms [149] (see Section F(i)(b)).

The collection of ¹⁸³W data is very time-consuming and spectra with

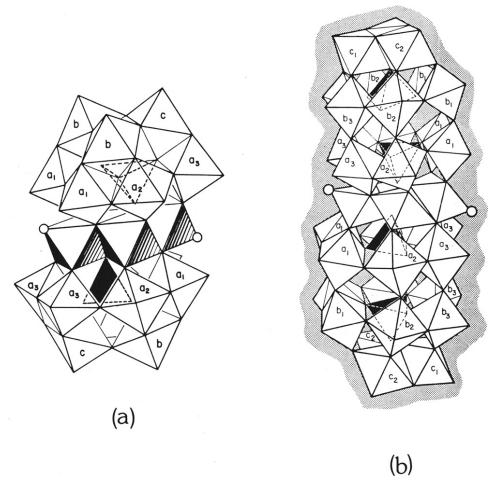


Fig. 33. Condensed polyhedron models of: (a) B- $[P_2W_{18}M_4(H_2O)_2O_{68}]^{10-}$ (M = Co^{2+} , Cu^{2+} , Zn^{2+}). The four M atoms occupy the four central edge-linked octahedral sites; the two P atoms occupy the internal tetrahedral (dashed) sites; the circles represent the H_2O ligands. The model has C_{2h} point symmetry and the five different W sites are labelled a_1 , a_3 , a_2 , b_3 and b_4 . Reproduced from ref. 155, with permission; (b) B- $[P_4W_{30}M_4(H_2O)_2O_{112}]^{16-}$ (M = Co^{2+} , Cu^{2+} , Zn^{2+}). The M, P and H_2O sites are represented as in (a). The model has C_{2h} point symmetry and the eight different W sites are labelled a_1 , a_2 , a_3 , b_1 , b_2 , b_3 , c_1 and c_2 . Reproduced from ref. 156, with permission.

acceptable S/N ratios are often achieved only after three to four days accumulation. Nevertheless, the potential sensitivity of the method to distinguish very minor structural changes in a wide range of polyoxotungstates (as illustrated in the examples discussed in this section) justifies the commitment of spectrometer time. The application of 2D NMR methods is an exciting development in the unambiguous assignment of ¹⁸³W resonances to

particular W atoms in these species. Rapid progress should occur in this area.

(ii) Other tungsten(VI) compounds

Detailed relaxation time measurements on the 183 W nucleus have been reported (T_1 , 4.2 ± 0.6 s; T_2 , 2.1 ± 0.4 s) for only one compound, WF₆ [138]. Their magnitude indicates that relaxation times are likely to be relatively long for this nucleus in other W-containing species. A recent study of W(CO)₆ suggests that T_1 is in excess of 80 s for this compound in CH₂Cl₂ [35].

The ¹⁸³W chemical shifts for the W(VI) compounds collected in Table 30 span ca. 4900 ppm, with the resonance position being strongly affected by the nature of the coordinated ligand. The most highly shielded compound is

TABLE 30 Tungsten(VI) compounds

Compound	Solvent	Chemical shift (ppm)	Ref.
WF ₆	neat liquid	-1117	138
WF ₅ (OMe)	C_6F_6	- 1065	32
WF ₅ (OPh)	C_6F_6	-916	32
$[WOF_s]^-$	CD_3CN	- 502	32
$[(WOF_4)_2F]^-$	OS(OMe) ₂	- 490	32
cis-WF ₄ (OMe) ₂	neat liquid	- 946	32
cis-WF ₄ (OPh),	C_6F_6	- 850	32
trans-WOF ₄ (OMe ₂)	neat liquid	- 541	32
trans-WOF ₄ {OPMe(OMe) ₂ }	CD ₃ CN	− 57 4	32
trans-WOF ₄ {OS(OMe) ₂ }	OS(OMe) ₂	- 578	32
mer-WF ₃ (OMe) ₃	C_6F_6	-643	32
cis-WF ₂ (OMe) ₄	C_6F_6	- 503	32
WCl ₆	CS ₂	+ 2181	138
$WO_2(ONEt_2)_2$	CDCl ₃	- 330	165
$WO_2(ONC_5H_{10})_2$	CDCl ₃	- 338	165
$(NH_4)_2[WS_4]$	D_2O	+ 3769	56
$K_2[WOS_3]$	$D_2^{-}O$	+ 2760	56
$(NH_4)_2[WO_2S_2]$	$D_2^{-}O$	+ 1787	56
$(NH_4)_2[WO_3S]$	$D_{2}O$	+841	56
$(Pr_4^n N)_2[(NCCu)WS_4]$	HCONMe ₂	+ 3084	56
$(Pr_4^n N)_2[(NCAg)WS_4]$	HCONMe ₂	+ 3185	56
$(Pr_4^n N)_2[(NCCu)_2WS_4]$	HCONMe ₂	+ 2641	56
(Et ₄ N) ₂ [(NCCu)WOS ₃]	HCONMe,	+ 1994	56
W(CCMe ₃)(CH ₂ CMe ₃) ₃	toluene	+ 2282	102

 WF_6 . Substitution of fluorine atoms by ligands containing oxygen donors causes progressive deshielding of the ¹⁸³W nucleus. Similarly, substitution of fluorine atoms in WF_6 by chlorine atoms causes significant deshielding.

In the series $[WO_{4-n}S_n]^{2-}$ (n=0-4), a systematic decrease in shielding occurs [56] with successive substitution of ligand O by S (Fig. 14). The decrease is 841-1009 ppm per S and the trend parallels that of the molybdenum analogues (Section E(i)(b)). The ¹⁸³W resonance in $(NH_4)_2[WS_4]$ appears to be solvent dependent (cf. $[MoS_4]^{2-}$) as a difference of 100 ppm in the ¹⁸³W chemical shift is observed between D₂O and HCONMe₂. The ¹⁸³W chemical shifts of the binuclear anions $[(CN)MS_2WS_2]^{2-}$ (M = Cu, Ag), $[(CN)CuS_2WOS]^{2-}$, and the trinuclear anions $[(CN)CuS_2WS_2Cu(CN)]^{2-}$ are all shielded with respect to the corresponding $[WS_4]^{2-}$ or $[WOS_3]^{2-}$ anions. The CuCN moiety is more shielding than is AgCN.

The most striking feature of the ¹⁸³W and ⁹⁵Mo chemical shifts (Section E(i)(b) and Tables 2, 4 and 30) in the $[MS_4]^{2-}$ anions and species derived from them, is the constancy of the shielding sensitivity $\delta(W)/\delta(Mo) = 1.67 \pm 0.03$ (Fig. 34). This ratio has been useful for monitoring reaction mixtures for likely products in these systems and in searching for ¹⁸³W signals, a process which can consume many hours of spectrometer time. It should be stressed, however, that the shielding sensitivity can vary significantly in other systems (Section G(i)(d)).

Linewidths of ¹⁸³W resonances in W(VI) compounds are usually less than 1 Hz. However, in binuclear and trinuclear tungsten species containing CuCN units, the ^{63,65}Cu quadrupolar nucleus causes appreciable broadening of the ¹⁸³W linewidth [56], e.g. in [(NCCu)WS₄]²⁻ $W_{1/2}$ = 5 Hz; in [(NCCu)₂WS₄]²⁻ $W_{1/2}$ = 60 Hz.

(iii) Tungsten(IV) and (III) compounds

The single reported ¹⁸³W chemical shift for a compound of formal oxidation state(IV) is that of Cp₂WH₂ (-4663 ppm, CH₂Cl₂) [141]. A similar situation holds for oxidation state (III): W₂(OBu^t)₆ (4408 ppm, toluene) [102].

(iv) Tungsten(II) compounds

With one exception, the compounds examined are mononuclear organotungsten species containing cyclopentadienyl and carbonyl ligands [141,152]. Their ¹⁸³W chemical shifts (Table 31) span 1600 ppm, with all resonances being shielded with respect to the $[WO_4]^{2-}$ reference. As observed for the molybdenum analogues, the series $CpW(CO)_3X$ (X = Cl, Br, I) follows a normal halogen dependence.

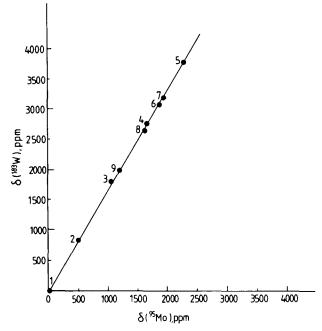


Fig. 34. Plot of $\delta(^{183}\text{W})$ versus $\delta(^{95}\text{Mo})$ for the following molecules: M = Mo, W:1, $[\text{MO}_4]^{2^-}$; 2, $[\text{MO}_3\text{S}]^{2^-}$; 3, $[\text{MO}_2\text{S}_2]^{2^-}$; 4, $[\text{MOS}_3]^{2^-}$; 5, $[\text{MS}_4]^{2^-}$; 6, $[(\text{NCCu})\text{MS}_4]^{2^-}$; 7, $[(\text{NCAg})\text{MS}_4]^{2^-}$; 8, $[(\text{NCCu})_2\text{MS}_4]^{2^-}$; 9, $[(\text{NCCu})\text{MoOS}_3]^{2^-}$. Reproduced from ref. 56, with permission.

The dimer $W_2(O_2CCF_3)_4$, which features a quadruple W-W bond, has a chemical shift of 6760 ppm in THF solution [166]. This large positive shift is well outside the range for the mononuclear species and parallels the behavior of the analogous Mo(II) species (Section E(v)(e)). Interestingly, $\delta(^{183}W)/\delta(^{95}Mo) = 1.68$ (see Section F(ii)).

(v) Tungsten(0) compounds

A total of 52 species have been examined (Table 32) and the chemical shifts found to span the range -3486 to -2641 ppm. The majority contain phosphorus-donor ligands observed via multiple resonance experiments (see Section C(vii)). W(CO)₆ and W(CO)₅L (L = PPh₃, PPh₂(CH=CH₂), PPh(CH=CH₂)₂) were measured directly and it is to be expected that such experiments will become more commonplace.

The most highly shielded W(0) compound is W(CO)₆. Replacement of a single CO ligand by a monodentate P-donor ligand causes deshielding of up to 211 ppm. Further substitution of CO by P donors causes additional

TABLE 31
Tungsten(II) compounds

Compound	Solvent	Chemical shift (ppm)	Ref.
[CpW(CO) ₃ (PPh ₂ Me)]I	CD ₃ NO ₂	-3327	152
$CpW(CO)_2H(P(OMe)_3)$	C_6H_6	-3886	141
$CpW(CO)_2H(PMe_2Ph)$	C_6H_6	-3673	141
$CpW(CO)_2H(PPh_2Me)$	C_6H_6	-3674	141
CpW(CO) ₃ H	C_6H_6	-4010	141
CpW(CO) ₃ D	C_6H_6	-4021	141
CpW(CO) ₃ Me	C_6H_6	- 3542	141
CpW(CO) ₃ Et	C_6H_6	-3461	141
CpW(CO) ₃ Cl	C_6H_6	-2400	141
CpW(CO) ₃ Br	C_6H_6	-2578	141
CpW(CO) ₃ I	C_6H_6	-2990	141
$CpW(CO)_3(SnMe_3)$	C_6H_6	-4037	141
$CpW(CO)_3(PPh_2)$	$C_6D_6 \ (-80^{\circ}C)$	-3542	152
$CpW(CO)_2(PPh_2)(PMe_3)$	C_6D_6	-3232	152
$CpW(CO)_3(P(S)Ph_2)$	CH ₂ Cl ₂ /CDCl ₃	-3201	152
$CpW(CO)_2(P(S)Ph_2)(PMe_3)$	CDCl ₃	-3019	152
$[CpW(CO)_3]_2$	C_6H_6	-4033	141
$[W(CNCH_2Ph)_5(bpy)](PF_6)_2$	Me ₂ CO	- 1192	29
$[W(CNCMe_3)_5(bpy)](PF_6)_2$	Me_2CO	-1131	29
$W_2(O_2CCF_3)_4$	THF	+6760	166

deshielding, but the effects are not simply additive. Substitution of P(OMe)₃ by N-donors on *cis*-W(CO)₄{P(OMe)₃}₂ also causes deshielding.

In the series of compounds *cis*-W(CO)₄{Ph₂P(CH₂)_nPPh₂} and related species containing bidentate P ligands, the ¹⁸³W chemical shift is sensitive to the size of the chelate ring. Arguments relating to the chelate ring size and the associated interbond angles have been used to rationalize the trends [33,167].

(vi) Spin-spin coupling between 183W and other nuclei

There have been many reports of spin-spin coupling of the ¹⁸³W nucleus to other nuclei. The majority of these couplings have been observed as weak satellite peaks which arise from coupling of the observed nucleus having close to 100 atom % natural abundance (e.g. ³¹P, ¹⁹F, ¹H) to the ¹⁸³W atom (N, 14.4 atom %). Sometimes coupling to ¹⁸³W is observed in ¹³C spectra despite the low natural abundance of that nucleus. The coupling constants J_{W-X} (X = ³¹P, ¹⁹F, ¹³C, ¹H) have been used in a number of studies to obtain useful stereochemical information.

TABLE 32
Tungsten(0) compounds

Compound	Solvent	Chemical shift (ppm)	Ref.
W(CO) ₆	THF (55°C)	- 3483	33
. 70	CH_2Cl_2	- 3486	35
$W(CO)_5(PPh_3)$	$CH_2^2Cl_2$	-3276	35
$W(CO)_5\{PPh_2(CH=CH_2)\}$	CH_2Cl_2	-3314	35
$W(CO)_5\{PPh(CH=CH_2)_2\}$	$CH_2^2Cl_2^2$	- 3341	35
$W(CO)_5(PBu_3^n)$	CH ₂ Cl ₂	- 3408	33
$W(CO)_5(PPh_2Me)$	CH_2Cl_2	-3308	141
$W(CO)_5(PMe_2Ph)$	CH_2Cl_2	-3320	141
$W(CO)_5(PPhH_2)$	C_6H_6	- 3414	141
$W(CO)_{5}\{P(OMe)_{3}\}$	neat liquid	- 3469	33
$W(CO)_5(P(OPr^i)_3)$	CH ₂ Cl ₂	- 3410	33
$W(CO)_{5}\{P(OPh)_{3}\}$	CH ₂ Cl ₂	- 3410	33
$W(CO)_5\{PCl_2(OMe)\}$	C_6H_6	-3133	141
$W(CO)_{5}\{P(OMe)(OPh)_{2}\}$	CDCl ₃	-3427	141
$W(CO)_5\{P(OMe)((OCH_2)_2CMe_2)\}$	CD C.3	- 3456	141
$W(CO)_{5}\{PPh(OMe)_{2}\}$	C_6H_6	- 3386	141
$W(CO)_5\{PPh_2(OMe)\}$	CH_2Cl_2	- 3340	141
$W(CO)_5\{P(NMe_2)_3\}$	CH ₂ Cl ₂	-3385	141
$W(CO)_{5}\{PPh_{2}(SnMe_{3})\}$	C_6H_6	- 3275	141
$W(CO)_{5}\{PPh(SnMe_{3})_{2}\}$	C_6H_6	-3282	141
$W(CO)_5\{P(SnMe_3)_3\}$	C_6H_6	- 3295	141
$(NEt_3H)[W(CO)_5\{P(O)(OMe_2)_2\}]$	C_6H_6	- 3 4 31	141
trans-W(CO) ₄ { $P(OMe)_3$ } ₂	$C_6 II_6$ $CH_2 Cl_2$	- 3427	141
cis-W(CO) ₄ { $P(OMe)_3$ } ₂	CH_2Cl_2/C_6D_6	- 3401	33
cis-W(CO) ₄ (P(OMe) ₃)	C_6H_6	- 2641	141
cis -W(CO) ₄ (NCPh){P(OMe) ₃ }	C_6H_6	-2963	141
cis -W(CO) ₄ (Mepy){P(OMe) ₃ }	C_6H_6	- 2654	141
cis -W(CO) ₄ {P(OMe) ₃ }{S(SnMe ₃) ₂ }	C_6H_6	- 2918	141
trans-W(CO) ₄ (PBu ₃ ⁿ) ₂	CH ₂ Cl ₂	- 3125	140
cis-W(CO) ₄ (PMe ₂ Ph) ₂	CH_2Cl_2 CH_2Cl_2	-3111	141
cis-W(CO) ₄ (PBu ₃ ⁿ) ₂	CH ₂ Cl ₂	-2812	141
$trans$ -W(CO) ₂ {P(OMe) ₃ } ₄	CH_2Cl_2/C_6D_6	- 3207	33
fac-W(CO) ₃ (PMe ₂ Ph)	CH_2Cl_2 CH_2Cl_2	-2812	141
fac-W(CO) ₃ {PPh(CH ₂ CH ₂ PPh ₂) ₂ }	CH_2Cl_2/C_6D_6	-3255	33
fac-W(CO) ₃ { $P(OMe)_3$ } ₃	CH_2Cl_2/C_6D_6 CH_2Cl_2/C_6D_6	- 3297	33
cis-W(CO) ₄ (Ph ₂ PNHPPh ₂)	CH_2Cl_2/C_6D_6 CH_2Cl_2/C_6D_6	-3002	167
cis-W(CO) ₄ (In ₂ FNIII In ₂)	CH_2Cl_2/C_6D_6 CH_2Cl_2/C_6D_6	- 3002 - 2957	33, 167
cis-W(CO) ₄ (dppn)	CH_2CI_2/C_6D_6 CH_2CI_2/C_6D_6	- 3291	
			33, 167
cis-W(CO) ₄ (dppp)	CH_2Cl_2/C_6D_6	- 3158	33, 167
cis-W(CO) ₄ (Ph ₂ P(CH ₂) ₄ PPh)	CH_2Cl_2/C_6D_6	-3117	167
cis-W(CO) ₄ (Ph ₂ PCH ₂ PPr ₂)	CH_2Cl_2/C_6D_6	- 3060	33
cis-W(CO) ₄ (Ph ₂ PCH ₂ PBu ^t ₂)	CH_2Cl_2/C_6D_6	- 2980 2016	33
cis-W(CO) ₄ (Ph ₂ PCH ₂ PPhPr ⁱ)	CH_2Cl_2/C_6D_6	-3015	33

TABLE 32 (continued)

Compound	Solvent	Chemical shift (ppm)	Ref.
cis-W(CO) ₄ (Ph ₂ PCH ₂ PMe ₂)	CH ₂ Cl ₂ /C ₆ D ₆	- 2979	33
cis-W(CO) ₄ (Ph ₂ PCH ₂ PMePh)	CH_2Cl_2/C_6D_6	- 2987	33
cis -W(CO) ₄ {CH ₂ =C(PPh ₂) ₂ }	CH_2Cl_2/C_6D_6	-3007	33, 167
cis-W(CO) ₄ (Ph ₂ PCH=CHPPh ₂)	CH_2Cl_2/C_6D_6	-3333	33, 167
cis -W(CO) ₄ {CH(PPh ₂) ₃ }	CH_2Cl_2/C_6D_6	- 2929	33
cis-W(CO) ₄ {Ph ₂ P(S)CH ₂ PPh ₂ }	CH_2Cl_2/C_6D_6	-2859	33
cis -W(CO) ₄ {Ph ₂ P(S)CH ₂ PMe ₂ }	CH_2Cl_2/C_6D_6	-2878	33
cis -W(CO) ₄ { $Ph_2P(S)CH_2PPr_2^{\dagger}$ }	CH_2Cl_2/C_6D_6	-2933	33
cis-W(CO) ₄ {Ph ₂ P(S)CH ₂ PPhPr ⁱ }	CH_2Cl_2/C_6D_6	-2898	33
cis-W(CO) ₄ {Ph ₂ P(Se)CH ₂ PPh ₂ }	CH_2Cl_2/C_6D_6	-2910	33

The recent direct measurement of the 183 W resonances in the polyoxotungstate species (Section F(i)) has highlighted the use of $^2J_{W-O-W}$ coupling constants to define the structures of certain of these compounds in solution. However, very few coupling constants have been derived from direct observation of the 183 W resonance. The discussion which follows is not intended to afford an exhaustive compilation of the coupling constants of 183 W to other nuclei. The ranges of various one-bond 183 W-X couplings (X = H, C, F, P) which were observed prior to 1978 have been reviewed [168].

(a)
$$^{183}W - ^{31}P$$
 coupling

A large number of ${}^{1}J_{W-P}$ coupling constants have been measured. Several comprehensive reviews cover the literature through 1978 [168–171]. ${}^{1}J_{W-P}$ is normally in the range of 200 to 500 Hz but there are several compounds whose coupling constants are outside this range [141,172]. For example, the unusually small values of 155 Hz (R = Ph) and 145 Hz (R = CO₂Me) for W(C=CHR)(CO)₃(dppe) are attributed to the strong *trans* influence of the vinylidene ligands.

A recent comprehensive study of a series of W(0)– and Mo(0)–phosphine complexes indicated that ${}^{1}J_{W-P}$ closely parallels ${}^{1}J_{Mo-P}$ in that the same trends are observed in corresponding series of compounds. The experimental ratio ${}^{1}J_{W-P}/{}^{1}J_{Mo-P}$ is 1.76 which corresponds to a ratio for the reduced coupling constants ${}^{1}K(WP)/{}^{1}K(MoP)$ of 2.76 [33]. ${}^{1}J_{W-P}$ is positive in octahedral W(0) compounds [173].

(b)
$$^{183}W - ^{19}F$$
 coupling

The ¹⁸³W NMR spectrum of WF₆ consists of a septet (1:6:15:20:15:6:1) as expected for coupling between the ¹⁸³W nucleus and the six equivalent

¹⁹F atoms, with ${}^{1}J_{W-F} = 40.7$ Hz [138]. Several studies of compounds in which one or more of the fluorine atoms in WF₆ are replaced by ligands containing oxygen donor atoms has shown that ${}^{1}J_{W-F}$ varies from 12 to 71 Hz and is dependent on the number of fluorine atoms replaced, the stere-ochemistry of the resulting species, and the nature of the coordinated ligand [32,174]. For other systems, values outside this range are observed. For example, ${}^{1}J_{W-F}$ in $(NF_4)[W_2O_2F_9]$ is 84 Hz [175].

(c) $^{183}W - ^{13}C$ coupling

A recent comprehensive review on 13 C NMR spectroscopy gives an excellent coverage of J_{W-C} coupling constants in W compounds which contain direct W-C bonds [176]. For W(CO)₆, $^{1}J_{W-C}$ has been reported as 124.5 and 126 Hz while it varies in substituted species from 102.5 Hz for a trans CO group in W(CO)₅(CR₂) to 202.6 Hz for the carbonyl ligands of CpW(CO)₂(CR). The tabulation [176] also includes $^{1}J_{W-C}$ couplings of W to the carbon atom in coordinated alkyls, coordinated carbenes ($^{1}J_{W-C}$ ranges from ca. 70 to 120 Hz, the value being dependent on the nature of other ligands) and carbynes ($^{1}J_{W-C}$ ranges from 168 to 230 Hz).

More recently the presence of bridging carbene and carbyne ligands has been established by the use of ${}^{1}J_{W-C}$ coupling constants, which appear to be in the approximate range 29–160 Hz for these species [177]. The ${}^{1}J_{W-C}$ couplings for K₄[W(CN)₇H] and K₅[W(CN)₇] are 62.9 and 57.3 Hz, respectively [178].

(d) $^{183}W-^{1}H$ coupling

 $^{1}J_{W-H}$ couplings in the tungsten hydrides for bridging and terminal hydride ligands are normally observed in the range 28–80 Hz [168]. However, recent studies [179,180] have indicated that $^{1}J_{W-H}$ for bridging hydrides can lie outside this range.

G. CONCLUSION

(i) Chemical shifts

(a) General comments

Sections E and F present and discuss ⁹⁵Mo and ¹⁸³W NMR data for about 450 molybdenum and 140 tungsten compounds. Both nuclei are very sensitive to changes in chemical environment with the existing chemical shift ranges covering 7000 and 11000 ppm for ⁹⁵Mo (Fig. 9) and ¹⁸³W respectively.

Generally the chemical shift increases as the metal oxidation state increases. However, there is considerable overlap in the center of the chemical shift ranges. For 95 Mo in the range -1000 to +1000 ppm, there is at least one example for each oxidation state from Mo(0) to Mo(VI), with the

exception of Mo(III). Clearly, ⁹⁵Mo and ¹⁸³W NMR are not simple probes of oxidation state, but the growing data bases are providing starting points for empirical correlations. In several instances, the influence of solvent, temperature, concentration and pH have been assessed. Sufficient preliminary information is available to allow careful design of experiments to test existing theories of nuclear shielding for heavy nuclei.

(b) Nuclear shieldings of heavy nuclei

The factors contributing to the chemical shifts of heavy nuclei have been recently reviewed [159]. The effective field, B, experienced by a nucleus is related to the applied field, B_0 , by eqn. (7) where σ , the shielding constant, represents the difference between the environment of the nucleus under examination and a bare nucleus. Thus σ is determined by the electronic distribution about the nucleus.

$$B = B_0(1 - \sigma) \tag{7}$$

A number of theoretical approaches to calculating the nuclear shielding tensor have been taken. The Ramsey equation (8) which separates the shielding into diamagnetic (σ^d) and paramagnetic (σ^p) components is the most common starting point [158], but this approach has the disadvantage that the values of σ^d and σ^p are origin dependent, and that a knowledge of all the excited states is required.

$$\sigma = \sigma^{d} + \sigma^{p} \tag{8}$$

Several molecular methods have been developed within the framework of an independent electron model to produce atomic shielding relationships which contain localized and non-localized diamagnetic and paramagnetic terms. The localized terms are by far the largest so that

$$\sigma = \sigma_{A}^{d}(loc) + \sigma_{A}^{p}(loc)$$
(9)

with

$$\sigma_{\mathbf{A}}^{\mathbf{d}}(\mathbf{loc}) = \left(\frac{\mu_0 e^2}{12\pi m}\right) \sum_{\mathbf{B}}^{\mathbf{A}} P_{\mu\mu} \langle \mu | r_{\mathbf{A}\mu}^{-1} | \mu \rangle \tag{10}$$

In eqn. (10) $P_{\mu\mu}$ is the charge density in atomic orbital μ that is an average distance r_A from nucleus A.

$$\sigma_{\mathbf{A}}^{\mathbf{p}}(\mathbf{loc}) = \left(\frac{-\mu_0 e^2 \hbar^2}{6\pi m^2 \Delta \epsilon}\right) \left(\langle r^{-3} \rangle_{np} P_{\mu} + \langle r^{-3} \rangle_{nd} D_{\mu}\right) \tag{11}$$

In eqn. (11) np and nd refer to the valence p and d electrons and P_{μ} and D_{μ} represent, respectively, the p and d electron imbalance about nucleus A. For heavy nuclei, such as 95 Mo and 183 W, eqn. (11) is the dominant factor in the

changes in total nuclear shielding, i.e. chemical shift differences among compounds [184]. Note that $\sigma_A^p(loc)$ has a negative sign, and hence deshields the nucleus.

The complexities of making molecular orbital calculations on atoms as large as molybdenum have precluded detailed calculations of the nuclear shielding for these molecules. However, analysis of the form of eqn. (11) suggests how the trends in chemical shifts might be analyzed if the explicit assumption (not necessarily justified) is made that the $\Delta\epsilon$ term can be separated from $(\langle r^{-3}\rangle_{np}P_{\mu}+\langle r^{-3}\rangle_{nd}D_{\mu})$. Since $\sigma_a^p(loc)$ is inversely dependent upon the average excitation energy,

Since $\sigma_a^p(loc)$ is inversely dependent upon the average excitation energy, $\Delta\epsilon$, the nuclear shielding for a series of related molecules will decrease as $\Delta\epsilon$ decreases. Such behavior is found for the $[MO_{4-n}S_n]^{2-}$ ions (M = Mo, W; n = 0-4; Tables 2 and 30) where the chemical shift increases with increasing n and the ions become increasingly highly colored, indicating a decrease in $\Delta\epsilon$. A more quantitative correlation holds for α - $[X^{n+}W_{12}O_{40}]^{(8-n)-}$ (Fig. 28). For these M(VI) complexes softer donor and X atoms lead to deshielding of the metal nucleus, and an increase in the chemical shift.

For several other series of compounds, however, the chemical shift changes show no correlation with $\Delta\epsilon$. For example, the six-coordinate complexes containing the $\{\text{Mo(NO)}_2\}^6$ group (Table 24) show small variations in $\Delta\epsilon$ that are not correlated with changes in the chemical shift. The chemical shifts of these compounds decrease as the ancillary ligands become softer and more effective at delocalizing electrons, thereby decreasing $\langle r^{-3} \rangle_{np}$ and $\langle r^{-3} \rangle_{np}$.

It should be apparent from the above examples that addition of soft polarizable ligands can result in either chemical shift increases or decreases (Fig. 23), depending upon the type of complex being studied. For compounds in different oxidation states the p and d electron imbalance (P_{μ} and D_{μ} respectively) may also differ, even though the ligands are similar. The chemical shift responses for several different classes of molybdenum compounds have been explicitly demonstrated by observing the dependence of the chemical shift to substitution of a single halogen atom.

(c) Halogen dependence of the chemical shift

Kidd [11] introduced the term halogen dependence to describe the response of the chemical shift to the sequential substitution of Cl by Br and I. Nuclear shielding which follows the order Cl < Br < I is called "normal halogen dependence", whereas the shielding order I < Br < Cl is called "inverse halogen dependence". An unusual feature of molybdenum compounds is that both kinds of halogen dependence are found. *cis*-Dioxomolybdenum(VI) complexes (Table 6) and six-coordinate $\{MoNO\}^4$ complexes (Table 23) exhibit inverse halogen dependence. Most other compounds,

TABLE 33
Summary of current ⁹⁵Mo NMR data

Class of complex	Oxidat	ionChemical	Linewidth	Halogen	Table
·	state	shift range (ppm)	range (Hz)	dependen	ce
$[MoX_4]^2$ (X = 0, S, Se)	+ 6	0 to 3150	0.3 to 10	_	2
Polyoxomolybdates	+6	-18 to 140	16 to 720	_	3
$[MoX_4(M'L)_n]^{2-}$ $(M' = Cu^1, A$	$(4g^1) + 6$	470 to 1925	15 to 1400	-	4
$MoX_2(ONR_2)_2$	+6	-230 to 1285	65 to 530	_	5
cis-[MoO ₂] ²⁺	+6	-155 to 630	40 to 1170	inverse	6
$[MoO]^{4+}$	+6	-610 to 185	20 to 500	inverse	7
[MoN] ³⁺	+6	-120 to 1110	< 20 to 80	_	7
[MoNPh] ⁴⁺	+6	-295 to -220	400 to 480	inverse	7
$[MoO_3]$	+6	55 to 80	120 to 500	_	8
$[Mo_2O_2X_2]^{2+}$	+ 5	320 to 985	150 to 670	_	9
$[Mo_3O_4]^{4+}$	+4	990 to 1165	250 to 1400	_	10
$[Mo \equiv Mo]^{6+}$	+ 3	2420 to 3625	120 to 1320	_	11
$[Mo(CO)_3]^{2+}$	+ 2	-2075 to 200	25 to 300	normal	12, 13
$[Mo(CO)_2]^{2+}$	+ 2	-885 to 314	50 to 600	_	14, 15
$[Mo(CNR)_n]^{2+}$	+ 2	-1005 to $+70$	35 to 1100	normal	16
$[Mo \equiv Mo]^{4+}$	+ 2	3225 to 4150	220 to 1440	^a normal	17
[Mo(CO) ₅]	0	-1940 to -138	55 to 190	normal	18
$[Mo(CO)_4]$	0	-1850 to -105	05 to 400	_	19
$[Mo(CO)_3]$	0	-2125 to -865	4 to 850	~	20
$[Mo(CO)_2]$ and $[Mo(CO)]$	0	-1805 to -108	0100 to 1600	_	21
$[Mo(N_2)_2]$	0	-1025 to -445	90 to 100	_	22
${MoNO}^4$	_	- 370 to 2275	390 to 2000	inverse	23
{MoNO} ⁶	_	-1585 to -435	< 40 to 110	_	23
${Mo(NO)_2}^6$	-	-985 to +205	20 to 435	normal	24

^a Mainly elevated T.

including those of Mo(II) and Mo(0), show normal halogen dependence. Table 33 and Fig. 9 summarize the ⁹⁵Mo chemical shift data for various classes of molybdenum compounds. Table 33 also gives the halogen dependence for each class, if known.

Kidd [11] has suggested that inverse halogen dependence of the chemical shift occurs for elements with valence shell electron configurations which are less than half-filled, whereas normal halogen dependence will occur for other elements. It is interesting to note that the $5s^14d^5$ electron configuration of molybdenum would have both the s and d orbitals exactly half-filled.

(d) Shielding sensitivity

The shielding sensitivity is defined [11] as the ratio of chemical shifts for

analogous compounds of two different elements, and should be given by eqn. 12 for $^{183}\mathrm{W}$ and $^{95}\mathrm{Mo}$.

$$\frac{\delta(W)}{\delta(Mo)} = \frac{\Delta \epsilon(Mo)}{\Delta \epsilon(W)} \left[\frac{\langle r^{-3} \rangle 6 p_W P_{\mu W} + \langle r^{-3} \rangle 5 d_W D_{\mu W}}{\langle r^{-3} \rangle 5 p_{Mo} P_{\mu Mo} + \langle r^{-3} \rangle 4 d_{Mo} D_{\mu Mo}} \right]$$
(12)

It is striking that this ratio is remarkably constant at 1.7 ± 0.2 for an extensive and disparate series [33,56] of M(0) and M(VI) species (e.g. Fig. 34) and some M(II) derivatives. Attempts to rationalize this constancy using eqn. (12) have not been particularly successful, and it may be that the assumptions introduced to produce the working equation are simply not justified in the present systems [33,56]. In addition, it has recently been observed that the ratio ranges from 1.1 to 20 for M(II)-isocyanide complexes and is highly dependent upon the reference chosen for the chemical shift comparisons [29].

In summary, while the assumption that the ratio is between 1 and 2 has been useful in searching for new ¹⁸³W signals, especially in reaction mixtures, it seems unwise to predict ¹⁸³W chemical shifts from the ⁹⁵Mo shifts for species of intermediate oxidation state.

(ii) Spin-spin coupling constants

The use of ¹⁸³W-O-¹⁸³W coupling observed in 1D and 2D ¹⁸³W spectra to provide definitive structural assignments in solution (Sections F(i)(a) and F(i)(b)) is a major development in polyoxometallate chemistry. Well-resolved coupling of ⁹⁵Mo to ³¹P (Section E(xi)(a) and Fig. 21, for example) is of similar utility in organometallic chemistry. Theoretical rationalization of trends and magnitudes of coupling constant data is at an early stage of development.

(iii) Linewidths and relaxation times

It has been confirmed experimentally (Section E(xii)) that the quadrupole relaxation mechanism determines the ⁹⁵Mo relaxation rate in Mo(CO)₆ and it can safely be assumed **15** dominate in molecules of lower symmetry. This legitimizes previous rationalizations of experimental linewidths.

Detailed relaxation time data for the ¹⁸³W nucleus are available for WF₆ only [138].

(iv) Solid-state NMR

High resolution solid state measurements on molybdenum and tungsten compounds have yet to be reported in the literature. A recent experiment [181] indicates that line-broadening due to chemical-shift anisotropy in solid W(CO)₆ is not excessive (δ , -3440 ppm; $W_{1/2}$, 500 Hz at 16.67 MHz). Recently considerable progress has been made [182] in the development of high resolution solid-state NMR of quadrupole nuclei such as ¹⁷O, ²³Na, ²⁷Al and ⁵¹V, and prospects are good for extension to ⁹⁵Mo despite its relatively low sensitivity and resonance frequency.

ACKNOWLEDGEMENTS

M.M. and J.H.E. thank Dr. K. Christensen for helpful technical discussions, Dr. C.G. Young for critically reading the manuscript, A. Cisco for technical assistance and R. Redmond and L. Ruiz for some of the drawings. Support by the U.S. Department of Agriculture (Grant No. 81-CRCR-1-0626) is gratefully acknowledged. Samples of molybdenum compounds were generously supplied by Professors Brunner, Dehnicke, Garner, McCleverty, Spence, Walton and Wieghardt and by Drs. C. Jones, E. Kober and J. Wachter. R.T.C.B., M.J.O.'C. and A.G.W. thank the Australian Research Grants Scheme and the Australian Wool Corporation for generous support and B.P. Shehan for many helpful discussions.

Note Added in Proof, September 1985

Several papers on the nuclear magnetic resonance properties of Group 6 metals have appeared since the original compilation of data for this review. Some features of Group 6 NMR are discussed in two more general reviews [187,188]. Probe ringing has been removed from ⁹⁵Mo NMR spectra by making the measurements at two different radiofrequency fields [189]. Comparison of the relaxation times of $[M(CO)_6]^{0,-}$ (M = Cr, Mo) species has permitted construction of a self-consistent set of quadrupole moments for ⁵³Cr, ⁹⁵Mo and ⁹⁷Mo. The results confirm the values for ⁹⁵Mo and ⁹⁷Mo listed in Table 1, but suggest that for 53 Cr, $|O| = 0.041 \times 10^{-28} \text{ m}^2$ [190]. The binding of MoS₄²⁻ to bovine serum albumidecreases the ⁹⁵Mo chemical shift and increases the linewidth from <1 t, ca. 100 Hz. [190]. Several compounds containing the [Mo₂O₅]²⁺ core have been characterized by ⁹⁵Mo NMR [192–194], supplementing the single result in Table 6 [128]. A 95 Mo NMR survey of polyoxomolybdates in aqueous solution [195] complements earlier results [60]; broad lines (250-2610 Hz) were observed [194]. The first detailed 95Mo NMR study of mononuclear oxo-Mo(IV) complexes has revealed broad lines and chemical shifts in the range 1000-3200 ppm [70], several thousand ppm more deshielded than previously suggested [16,86]. The conformational isomers of CpMo(X)(Y)(allyl) compounds in solution have been established by 95 Mo NMR [196]. The 95 Mo NMR chemical shifts

of [Mo(CO)₅X]⁻ anions show normal halogen dependence as X is varied [197]. Diamagnetic tetranuclear homo- and heterometallic cubane complexes containing molybdenum [198] exhibit sharp 95 Mo resonances in the -130 to -1620 ppm region [92]. The ⁹⁵Mo and ⁹⁷Mo spectra of MoF₆ have been investigated in both the liquid and solid phases. The liquid spectra are septets with $J_{\text{Mo-F}} = 47.2$ Hz [199]. The solid state structure of the first $mercury(I)-containing \ polytung state, \ [(Hg_2)_2WO(H_2O)(AsWgO_{33})_2]^{10-} \ was$ confirmed in Me₂SO solution by ¹⁸³W NMR [200]. The ¹⁸³W spectra of the two-electron reduced diamagnetic heteropoly blue anions, $\alpha - [P_2Mo_3W_{15}O_{62}]^{8-1}$ and α - $[P_2W_{18}O_{62}]^{8-}$, have shown that these anions retain the Wells-Dawson structure (Fig. 32(a)) of their oxidized parents. The extra electrons are delocalized over the Mo₃O₁₃ cap and the twelve "belt" tungsten atoms, respectively. Also reported are the first 183W relaxation times for polyoxotungstate systems. For α -[$P_2W_{18}O_{62}$]⁸⁻ at 26°C the relaxation time of the capping tungsten atoms (276 ms) is 12 times larger than that for the belt tungsten atoms (23.4 ms) [201].

REFERENCES

- 1 F.A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 4th edn., Wiley-Interscience, New York, 1980, pp. 719, 844.
- 2 C.L. Rollinson, in A.F. Trotman-Dickenson, (exec. Ed.), Comprehensive Inorganic Chemistry, Pergamon, Oxford, Vol. 3, 1973, p. 623.
- 3 G. Wilkinson, F.G.A. Stone and E.W. Abel (eds.), Comprehensive Organometallic Chemistry, Pergamon, New York, Vol. 3, 1982.
- 4 E.I. Stiefel, Prog. Inorg. Chem., 22 (1977) 1.
- 5 Z. Dori, Prog. Inorg. Chem., 28 (1981) 239.
- 6 M.T. Pope, Heteropoly and Isopoly Oxometalates, Springer-Verlag, Berlin, 1983.
- 7 M. Coughlan (Ed.), Molybdenum and Molybdenum-containing Enzymes, Pergamon, Oxford, 1980.
- 8 S.P. Cramer and K.O. Hodgson, Prog. Inorg. Chem., 25 (1979) 1.
- 9 R.G. Kidd and R.J. Goodfellow, in Harris, R.K. and B.E. Mann (Eds.), NMR and the Periodic Table, Academic Press, London, 1978, p. 212.
- 10 F.W. Wehrli, Annu. Rep. NMR Spectrosc., 9A (1979) 146.
- 11 R.G. Kidd, Annu. Rep. NMR Spectrosc., 10A (1979) 19.
- 12 P.L. Rinaldi, G.C. Levy and G.R. Choppin, Rev. Inorg. Chem., 2 (1980) 53.
- 13 J.H. Enemark, in A. Müller and W.E. Newton (Eds.), Nitrogen Fixation: The Chemical-Biochemical-Genetic Interface, Plenum Press, New York, 1983, p. 329.
- 14 R.G. Kidd, in J.B. Lambert and F.G. Riddell (Eds.), The Multinuclear Approach to NMR Spectroscopy, Reidel, Dordrecht, 1983, p. 445.
- 15 (a) A. Abragam, The Principles of Nuclear Magnetism, Oxford University Press, London, 1961, p. 314.
 - (b) R.K. Harris, in R.K. Harris and B.E. Mann (Eds.), NMR and the Periodic Table, Academic Press, London, 1978, p. 17.
- 16 S.F. Gheller, T.W. Hambley, R.T.C. Brownlee, M.J. O'Connor, M.R. Snow and A.G. Wedd, J. Am. Chem. Soc., 105 (1983) 1527.

- 17 (a) W.G. Klemperer, Angew. Chem. Int. Ed. Engl., 17 (1978) 246.
 - (b) J.A. Gerlt, P.C. Demou and S. Mehdi, J. Am. Chem. Soc., 104 (1982) 2848.
 - (c) S. Forsen and B. Lindman, Annu. Rep. NMR Spectrosc., 11A (1981) 183.
 - (d) R.T.C. Brownlee, M. Sadek and D.J. Craik, Org. Magn. Reson., 21 (1983) 616.
- 18 R.R. Vold and R.L. Vold, J. Magn. Reson., 19 (1975) 365 and references therein.
- 19 O. Lutz, A. Nolle and P. Kroneck, Z. Naturforsch., Teil A, 32 (1977) 505.
- 20 P.B. Shehan, R.T.C. Brownlee, M. Kony, M.J. O'Connor and A.G. Wedd, J. Magn. Reson., 63 (1985) 343.
- 21 C. Brevard in P. Laszlo (Ed.), NMR of Newly Accessible Nuclei, Academic Press, New York, Vol. 1, 1983, p. 3.
- 22 T.C. Farrar and E.D. Becker, Pulse and Fourier Transform NMR, Academic Press, New York, 1971.
- 23 K.A. Christensen, P.E. Miller, M. Minelli, T.W. Rockway and J.H. Enemark, Inorg. Chim. Acta, 56 (1981) L27.
- 24 K.A. Christensen, M. Minelli and J.H. Enemark, unpublished results.
- 25 E. Fukushima and S.B.W. Roeder, Experimental Pulse NMR, A Nuts and Bolts Approach, Addison-Wesley, Reading, MA, 1981, p. 463.
- 26 (a) S. Forsen and B. Lindman, Ion Binding in Biological Systems Measured by Nuclear Magnetic Resonance, in D. Glick, (Ed.), Methods of Biochemical Analysis, Wiley, New York, 1981.
 - (b) T. Andersson, T. Drakenberg, S. Forsen, E. Thulin and M. Swärd, J. Am. Chem. Soc., 104 (1982) 576.
- 27 (a) E. Hofer, W. Holzbach and K. Wieghardt, Angew. Chem., Int. Ed. Engl., 20 (1981) 282.
 - (b) K. Wieghardt, M. Hahn, J. Weiss and W. Swiridoff, Z. Anorg. Allg. Chem., 492 (1982) 164.
- 28 M. Minelli, J.L. Hubbard and J.H. Enemark, Inorg. Chem., 23 (1984) 970.
- 29 M. Minelli, A. Bell, J.H. Enemark and R.A. Walton, J. Organomet. Chem., 284 (1985) 25.
- 30 M. Minelli, C.G. Young and J.H. Enemark, Inorg. Chem., 24 (1985) 1111.
- 31 D.I. Hoult in G.C. Levy (Ed.), Topics in C-13 NMR Spectroscopy, Vol. III, Wiley, New York, 1979, p. 16.
- 32 W. McFarlane, A.M. Noble and J.M. Winfield, J. Chem. Soc. A, (1971) 948.
- 33 G.T. Andrews, I.J. Colquhoun, W. McFarlane and S.O. Grim, J. Chem. Soc. Dalton Trans., (1982) 2353.
- 34 C. Brevard and R. Schimpf, J. Magn. Reson., 47 (1982) 528.
- 35 R.L. Keiter and D.G. Van der Velde, J. Organomet. Chem., 258 (1983) C34.
- 36 Y. Egozy and A. Loewenstein, J. Magn. Reson., 1 (1969) 494.
- 37 B.W. Epperlein, H. Krüger, O. Lutz, A. Nolle and W. Mayr, Z. Naturforsch., Teil A, 30 (1975) 1237.
- 38 E. Haid, D. Köhnlein, G. Kössler, O. Lutz and W. Schich, J. Magn. Reson.. 55 (1983) 145.
- 39 O. Lutz, W. Nepple, and A. Nolle, Z. Naturforsch., Teil A, 31 (1976) 1046.
- 40 R.G. Kidd, J. Magn. Reson., 45 (1981) 88.
- 41 W. Ertmer, U. Johann and R. Mosmann, Z. Phys. A, 309 (1982) 1.
- 42 (a) W.G. Proctor and F.C. Yu, Phys. Rev., 81 (1951) 20.(b) S.I. Aksenov, Soviet Phys. JETP, 8 (1959) 207.
- 43 T.J. Rowland, Prog. Math. Sci., 1 (1961) 9.
- 44 J. Kaufmann, Z. Phys., 182 (1964) 217.

- 45 A. Narath and D.W. Alderman, Phys. Rev., 143 (1966) 328.
- 46 H. Krüger, O. Lutz, A. Nolle and A. Schwenk, Z. Naturforsch., Teil A, 28 (1973) 119.
- 47 A. Narath, K.C. Brog and W.H. Jones, Jr., Phys. Rev. B, 2 (1970) 2618.
- 48 G.F. Lynch and S.L. Segal, Can. J. Phys., 50 (1972) 567.
- 49 W.D. Kautt, H. Krüger, O. Lutz, H. Maier and A. Nolle, Z. Naturforsch., Teil A, 31 (1976) 351.
- 50 O. Lutz, A. Nolle and P. Kroneck, Z. Naturforsch., Teil A, 31 (1976) 454.
- 51 K.U. Buckler, A.R. Haase, O. Lutz, M. Müller and A. Nolle, Z. Naturforsch., Teil A, 32 (1977) 126.
- 52 O. Lutz, A. Nolle and P. Kroneck, Z. Phys. A, 282 (1977) 157.
- 53 P. Kroneck, O. Lutz and A. Nolle, Z. Naturforsch., Teil A, 35 (1980) 226.
- 54 A.F. Masters, R.T.C. Brownlee, M.J. O'Connor, A.G. Wedd and J.D. Cotton, J. Organomet. Chem., 195 (1980) C17.
- 55 R.R. Vold and R.L. Vold, J. Chem. Phys., 61 (1974) 4360.
- 56 S.F. Gheller, T.W. Hambley, J.R. Rodgers, R.T.C. Brownlee, M.J. O'Connor, M.R. Snow and A.G. Wedd, Inorg. Chem., 23 (1984) 2519.
- 57 S.F. Gheller, P.A. Gazzana, A.F. Masters, R.T.C. Brownlee, M.J. O'Connor, A.G. Wedd, J.R. Rogers and M.R. Snow, Inorg. Chim. Acta, 54 (1981) L131.
- 58 M.T. Pope, Heteropoly and Isopoly Oxometalates, Springer Verlag, Berlin, 1983, pp. 42-44.
- 59 M.A. Freeman, F.A. Schultz and C.N. Reilley, Inorg. Chem., 21 (1982) 567.
- 60 S.F. Gheller, M. Sidney, A.F. Masters, R.T.C. Brownlee, M.J. O'Connor and A.G. Wedd, Aust. J. Chem., 37 (1984) 1825.
- 61 M. Filowitz, R.K.C. Ho, W.G. Klemperer and W. Shum, Inorg. Chem., 18 (1979) 93.
- 62 A.F. Masters, S.F. Gheller, R.T.C. Brownlee, M.J. O'Connor and A.G. Wedd, Inorg. Chem., 19 (1980) 3866.
- 63 A. Müller, E. Diemann, R. Jostes and H. Bögge, Angew. Chem. Int. Ed. Engl., 20 (1981) 934
- 64 A.G. Wedd, in A. Müller and R. Krebbs (Eds.), Sulfur: Its Significance for Chemistry, the Geo-, Bio- and Cosmo-spheres and Technology, Elsevier, Amsterdam, 1984, p. 181.
- 65 L. Maier and L.C.D. Groenweghe, J. Chem. Eng. Data, 7 (1962) 307.
- 66 S.R. Acott, C.D. Garner, J.R. Nicholson, and W. Clegg, J. Chem. Soc. Dalton Trans., (1983) 713.
- 67 M. Minelli, J.H. Enemark, J.R. Nicholson and C.D. Garner, Inorg. Chem., 23 (1984) 4384.
- 68 S.F. Gheller, T.W. Hambley, P.R. Traill, R.T.C. Brownlee, M.J. O'Connor, M.R. Snow and A.G. Wedd, Aust. J. Chem., 35 (1982) 2183.
- 69 S. Bristow, D. Collison, C.D. Garner and W. Clegg, J. Chem. Soc. Dalton Trans., (1983) 2495.
- 70 C.G. Young and J.H. Enemark, Inorg. Chem., in press.
- 71 M. Minelli, J.H. Enemark, K. Wieghardt and M. Hahn, Inorg. Chem., 22 (1983) 3952.
- 72 P.R. Traill, M.J. O'Connor and A.G. Wedd, unpublished observations.
- 73 M. Minelli, K. Yamanouchi, J.H. Enemark, P. Subramanian, B.B. Kaul and J.T. Spence, Inorg. Chem., 23 (1984) 2554.
- 74 E.C. Alyea and J. Topich, Inorg. Chim. Acta, 65 (1982) L95.
- 75 I. Buchanan, C.G. Garner and W. Clegg, J. Chem. Soc. Dalton Trans., (1984) 1333.
- 76 R.W.K. Lee, N.C. Howlader, G.P. Haight and E. Oldfield, unpublished results.
- 77 I. Buchanan, M. Minelli, M.T. Ashby, T.J. King, J.H. Enemark and C.D. Garner, Inorg. Chem., 23 (1984) 495.

- 78 S.P. Cramer, R. Wahl and K.V. Rajagopalan, J. Am. Chem. Soc., 103 (1981) 7721.
- 79 S.P. Cramer, L.P. Solomonson, M.W.W. Adams and L.E. Mortenson, J. Am. Chem. Soc., 106 (1984) 1467.
- 80 K. Yamanouchi and J.H. Enemark, Inorg. Chem., 18 (1979) 1626.
- 81 D.L. Kepert, Prog. Inorg. Chem., 23 (1977) 1.
- 82 E.I. Stiefel, K.F. Miller, A.E. Bruce, J.L. Corbin, J.M. Berg and K.O. Hodgson, J. Am. Chem. Soc., 102 (1980) 3624.
- 83 S. Bristow, J.H. Enemark, C.D. Garner, M. Minelli, G.A. Morris and R.B. Ortega, Inorg. Chem., in press.
- 84 M. Postel, C. Brevard, H. Arzoumanian and J.G. Riess, J. Am. Chem. Soc., 105 (1983) 4922
- 85 S.F. Gheller, M.J. O'Connor and A.G. Wedd, unpublished results.
- 86 S.F. Gheller, R.T.C. Brownlee, M.J. O'Connor and A.G. Wedd, in H.F. Barry and P.C.H. Mitchell (Eds.), Proceedings of the Fourth International Conference on the Chemistry and Uses of Molybdenum, Climax Molybdenum Co., Ann Arbor, MI, 1982, p. 67.
- 87 K. Wieghardt, M. Guttmann, P. Chaudhuri, W. Gebert, M. Minelli, C.G. Young and J.H. Enemark, Inorg, Chem., in press.
- 88 I. Buchanan, W. Clegg, C.D. Garner and G.M. Sheldrick, Inorg. Chem., 22 (1983) 3657.
- 89 K. Wieghardt, M. Hahn, W. Swiridoff and J. Weiss, Inorg. Chem., 23 (1984) 94.
- 90 R.K. Murmann and M.E. Shelton, J. Am. Chem. Soc., 102 (1980) 3984.
- 91 S.P. Cramer, P.K. Eidem, M.T. Paffett, J.R. Winkler, Z. Dori and H.B. Gray, J. Am. Chem. Soc., 105 (1983) 799.
- 92 C.G. Young, M. Minelli, J.H. Enemark, G. Miessler, N. Janietz, H. Kauermann and J. Wachter, Polyhedron, in press.
- 93 J.Y. LeGall, M.M. Kubicki and F.Y. Petillon, J. Organomet. Chem., 221 (1981) 287.
- 94 R.T.C. Brownlee, A.F. Masters, M.J. O'Connor, A.G. Wedd, H.A. Kimlin and J.D. Cotton, Org. Magn. Reson., 20 (1982) 73.
- 95 G. Backes-Dahmann, W. Hermann, K. Wieghardt and J. Weiss, Inorg. Chem., 24 (1985) 485.
- S. Lincoln, S.-L. Soong, S.A. Koch, M. Sato and J.H. Enemark, Inorg. Chem., 24 (1985) 1355.
- 97 H. Brunner, P. Beier, E. Frauendorfer, M. Muschiol, D.K. Rastogi, J. Wachter, M. Minelli and J.H. Enemark, Inorg. Chim. Acta, 96 (1985) L5.
- 98 H. Brunner, Adv. Organomet. Chem., 19 (1980) 151.
- 99 M. Minelli, T.W. Rockway, J.H. Enemark, H. Brunner and M. Muschiol, J. Organomet. Chem., 217 (1981) C34.
- 100 H. Brunner and D.K. Rastogi, Inorg. Chem., 19 (1980) 891.
- 101 S. Dysart, I. Georgii and B.E. Mann, J. Organomet. Chem., 213 (1981) C10.
- 102 M. Minelli, J.H. Enemark and E. Kober, unpublished results.
- 103 R.J. Klinger, W. Butler and M.D. Curtis, J. Am. Chem. Soc., 97 (1975) 3535.
- 104 R.D. Adams, D.M. Collins and F.A. Cotton, Inorg. Chem., 13 (1974) 1086.
- 105 A.F. Masters, G.E. Bossard, T.A. George, R.T.C. Brownlee, M.J. O'Connor and A.G. Wedd, Inorg. Chem., 22 (1983) 908.
- 106 E.C. Alyea, A. Somogyvari, in H.F. Barry and P.C.H. Mitchell (Eds.), Proceedings of the Climax Fourth International Conference on the Chemistry and Uses of Molybdenum, Climax Molybdenum Company, Ann Arbor, MI, 1982, p. 46.
- 107 E.C. Alyea and A. Somogyvari, Inorg. Chim. Acta, 83 (1984) L49.
- 108 G.M. Gray and R.J. Gray, Organometallics, 2 (1983) 1026.

- 109 G.M. Gray, Inorg. Chim. Acta, 81 (1984) 157.
- 110 P. Jaitner and M. Wohlgenannt, Monatsh. Chem., 113 (1982) 699.
- 111 G.M. Gray and C.S. Kraihanzel, Inorg. Chem., 22 (1983) 2959.
- 112 A.F. Masters, R.T.C. Brownlee, M.J. O'Connor and A.G. Wedd, Inorg. Chem., 20 (1981) 4183.
- 113 M. Minelli, C.G. Young, J.H. Enemark and K. Wieghardt, unpublished results.
- 114 M. Minelli, J.H. Enemark and K. Wieghardt, unpublished results.
- 115 S. Donovan-Mtunzi, M. Hughes, G.J. Leigh, H.M. Ali, R.L. Richards and J. Mason, Organomet. Chem., 246 (1983) C1.
- 116 M. Minelli, J.L. Hubbard, K.A. Christensen and J.H. Enemark, Inorg. Chem., 22 (1983) 2652.
- 117 M. Minelli, J.L. Hubbard, D.L. Lichtenberger and J.H. Enemark, Inorg. Chem., 23 (1984) 2721.
- 118 C.G. Young, M. Minelli, J.H. Enemark, W. Hussain, C.J. Jones and J.A. McCleverty, manuscript in preparation.
- 119 J.H. Enemark and R.D. Feltham, Coord. Chem. Rev., 13 (1974) 305.
- 120 M.M. Kubicki, R. Kergoat, J.Y. LeGall, J.E. Guerchais, J. Douglade and R. Mecier, Aust. J. Chem., 35 (1982) 1543.
- 121 P.S. Braterman, D.W. Milne, E.W. Randall and E. Rosenberg, J. Chem. Soc. Dalton Trans., (1973) 1027.
- 122 O.A. Gansow, B.Y. Kimura, G.R. Dobson and R.A. Brown, J. Am. Chem. Soc., 93 (1971) 5922.
- 123 B.E. Mann, J. Chem. Soc. Dalton Trans. (1973) 2012.
- 124 E.C. Alyea, R.E. Lenkinski, A. Somogyvari, Polyhedron, 1 (1982) 130.
- 125 J.T. Bailey, R.J. Clark and G.C. Levy, Inorg. Chem., 21 (1982) 2085.
- 126 G.M. Gray, R.J. Gray and D.C. Berndt, J. Magn. Reson., 57 (1984) 347.
- 127 M.T. Ashby and D.L. Lichtenberger, Inorg. Chem., 24 (1985) 636.
- 128 B. Piggott, R.N. Sheppard and D.J. Williams, Inorg. Chim. Acta, 86 (1984) L65.
- 129 R.T.C. Brownlee, M.J. O'Connor, B.P. Shehan and A.G. Wedd, J. Magn. Reson., 61 (1985) 22.
- 130 R.T.C. Brownlee, M.J. O'Connor, B.P. Shehan and A.G. Wedd, J. Magn. Reson., 61 (1985) 516.
- 131 C. Deverell, Mol. Phys., 18 (1970) 319.
- 132 A. Nolle, Z. Phys. A, 280 (1977) 231.
- 133 G.R. Hanson, G.R. Pullen, S.F. Gheller, G.R. Wilson, T.D. Bailey, C.R. Rodrigues, R.S. Scopes, R.T.C. Brownlee, M.J. O'Connor and A.G. Wedd, unpublished observations.
- 134 M. Minelli, J.H. Enemark and R.C. Bray, unpublished observations.
- 135 P.B. Sogo and C.D. Jeffries, Phys. Rev., 98 (1955) 1316.
- 136 A. Narath, K.C. Brog and W.H. Jones, Jr., Phys. Rev., B2 (1970) 2618.
- 137 A. Narath and D.C. Wallace, Phys. Rev., 127 (1962) 724.
- 138 J. Banck and A. Schwenk, Z. Physik., Teil B, 20 (1975) 75.
- 139 M.P. Klein and J. Happe, Bull. Am. Phys. Soc., 6 (1961) 104.
- 140 P.J. Green and T.H. Brown, Inorg. Chem., 10 (1971) 206.
- 141 H.C.E. McFarlane, W. McFarlane and D.S. Rycroft, J. Chem. Soc. Dalton Trans., (1976) 1616.
- 142 R. Acerete, C.F. Hammer and L.C.W. Baker, J. Am. Chem. Soc. 101 (1979) 267.
- 143 O.A. Gansow, R.K.C. Ho and W.G. Klemperer, J. Organomet. Chem., 187 (1980) C27.
- 144 P.R. Sethuraman, M.A. Leparulo, M.T. Pope, F. Zonnevijlle, C. Brevard and J. Lemerle, J. Am. Chem. Soc., 103 (1981) 7665; 104 (1982) 3782.

- 145 R. Acerete, C.F. Hammer and L.C.W. Baker, J. Am. Chem. Soc., 104 (1982) 5384.
- 146 R. Thouvenot, M. Fournier, R. Franck and C. Rocchiccioli-Deltcheff, Inorg. Chem., 23 (1984) 598.
- 147 J. Lefebvre, F. Chauveau, P. Doppelt and C. Brevard, J. Am. Chem. Soc., 103 (1981) 4589.
- 148 (a) R. Acerete, Ph.O. Thesis, Georgetown University, 1981.(b) Ref. 6, p. 13.
- 149 C. Brevard, R. Schimpf, G. Tourne and C.M. Tourne, J. Am. Chem. Soc.. 105 (1983) 7059
- 150 L.P. Kazansky and M.A. Fedotov, J. Chem. Soc. Chem. Commun., (1983) 417.
- 151 W.H. Knoth, P.J. Domaille and D.C. Roe, Inorg. Chem., 22 (1983) 198.
- 152 W. Malisch, R. Maisch, I.J. Colquhoun and W. McFarlane, J. Organomet. Chem., 220 (1981) C1.
- 153 R. Acerete, S. Harmalker, C.F. Hammer, M.T. Pope and L.C.W. Baker, J. Chem. Soc. Chem. Commun., (1979) 777.
- 154 R. Acerete, C.F. Hammer and L.C.W. Baker, Inorg. Chem., 23 (1984) 1478.
- 155 R.G. Finke, M. Droege, J.R. Hutchinson and O. Gansow, J. Am. Chem. Soc., 103 (1981) 1587.
- 156 R.G. Finke and M.W. Droege, Inorg. Chem., 22 (1983) 1006.
- 157 Ref. 6, pp. 25-27.
- 158 (a) N.F. Ramsey, Phys. Rev. 77 (1950) 567; 78 (1950) 699.
 - (b) C.J. Jameson and H.S. Gutowsky, J. Chem. Phys., 40 (1964) 1714.
 - (c) J.S. Griffith and L.E. Orgel, Trans. Faraday Soc., 53 (1957) 601.
- 159 G.A. Webb, in P. Laszlo (Ed.), NMR of Newly Accessible Nuclei, Vol. 1, Chemical and Biochemical Applications, Academic Press, New York, 1983, p. 3.
- 160 (a) R. Freeman, G.R. Murray and R.E. Richards, Proc. R. Soc. London, Ser. A, 242 (1957) 455.
 - (b) N. Juranic, M.B. Celap, D. Vucelic, M.J. Malinar and N. Radivojsa, J. Magn. Reson., 35 (1979) 319.
 - (c) D. Rehder, Bull. Magn. Reson., 4 (1982) 33.
 - (d) R. Bramley, M. Bronson, A.M. Sargeson and C.E. Schäffer, J. Am. Chem. Soc., 107 (1985) 2780.
- 161 R. Acerete, J.C. Bas, N. Casan, C.F. Hammer and L.C. W. Baker, 187th ACS National Meeting, St. Louis, Missouri, April 1984, Abstract 116.
- 162 P.J. Domaille and W.H. Knoth, Inorg. Chem., 22 (1983) 818.
- 163 Ref. 6, p. 59.
- 164 R. Massart, R. Contant, J-M. Fruchart, J-P. Ciabrini and M. Fournier, Inorg. Chem., 16 (1977) 2916.
- 165 A. McDonell, S. Vasudevan, M.J. O'Connor and A.G. Wedd, Aust. J. Chem., (1985) 38 (1985) 1017.
- 166 D.J. Santure, K.W. McLaughlin, J.C. Huffman and A.P. Sattelberger, Inorg. Chem., 22 (1983) 1877.
- 167 G.T. Andrews, I.J. Colquhoun and W. McFarlane, Polyhedron, 2 (1983) 783.
- 168 Ref. 15(b), pp. 216-217.
- 169 J.G. Verkade, Coord. Chem. Rev., 9 (1972) 1.
- 170 T.G. Appleton, H.C. Clark and L.E. Manzer, Coord. Chem. Rev., 10 (1973) 335.
- 171 P.S. Pregosin and R.W. Kunz, in P. Diehl, E. Fluck and R. Kosfeld (Eds.), NMR: Basic Principles and Progress, vol. 16, Springer Verlag, 1979.
- 172 K.R. Birdwhistell, S.J.N. Burgmayer and J.L. Templeton, J. Am. Chem. Soc., 105 (1983) 7789.

- 173 W. McFarlane and D.S. Rycroft, J. Chem. Soc. Chem. Commun., (1973) 336.
- 174 V.O. Leitzke and F. Sladky, Z. Anorg. Allgem. Chem., 480 (1981) 7.
- 175 W.W. Wilson and K.O. Christe, Inorg. Chem., 20 (1981) 4139.
- 176 B.E. Mann and B.F. Taylor, ¹³C NMR Data for Organometallic Compounds, Academic Press, London, 1981.
- 177 (a) L. Busetto, J.C. Jeffery, R.M. Mills, F.G.A. Stone, M.J. Went and P. Woodward, J. Chem. Soc. Dalton Trans., (1983) 101 and references therein.
 - (b) M. Green, S.J. Porter and F.G.A. Stone, J. Chem. Soc. Dalton Trans., (1983) 513.
 - (c) G.M. Dawkins, M. Green, K.A. Mead, J-Y. Salaün, F.G.A. Stone and P. Woodward, J. Chem. Soc. Dalton Trans., (1983) 527 and references therein.
- 178 A.M. Soares, P.M. Kiernan, D.J. Cole-Hamilton and W.P. Griffith, J. Chem. Soc. Chem. Commun., (1981) 84.
- 179 (a) C-Y. Wei, M.W. Marks, R. Bau, S.W. Kirtley, D.E. Bisson, M.E. Henderson and T.F. Koetzle, Inorg. Chem., 21 (1982) 2556.
 - (b) J.T. Lin, G.P. Hagen and J.E. Ellis, J. Am. Chem. Soc., 105 (1983) 2296.
 - (c) J.T. Lin and J.E. Ellis, J. Am. Chem. Soc., 105 (1983) 6252.
- 180 (a) P.S. Pregosin, A. Togni and L.M. Venanzi, Angew. Chem. Intl. Ed. Engl., 20 (1981) 668
 - (b) N.W. Alcock, O.W. Howarth, P. Moore and G.E. Morris, J. Chem. Soc. Chem. Commun., (1979) 1160.
 - (c) P.M. Boorman, K.J. Moynihan and K.A. Kerr, J. Chem. Soc. Chem. Commun., (1981) 1286.
- 181 C. Brevard, private communication.
- 182 (a) M.D. Meadows, K.A. Smith, R.A. Kinsey, T.M. Rothgeb, R.P. Skarjune and E. Oldfield, Proc. Natl. Acad. Sci. USA, 79 (1982) 1351.
 - (b) S. Schramm, R.J. Kirkpatrick and E. Oldfield, J. Am. Chem. Soc., 105 (1983) 2483.
- 183 Y. Jeannin and J. Martin-Frère, J. Am. Chem. Soc., 103 (1981) 1664.
- 184 H. Nakatsuji, K. Kanda, K. Endo and T. Yonezawa, J. Am. Chem. Soc., 106 (1984) 4653; K. Kanda, H. Nakatsuji and T. Yonezawa, J. Am. Chem. Soc., 106 (1984) 5888.
- 185 R.T.C. Brownlee, M.J. O'Connor, B.P. Shehan and A.G. Wedd, J. Magn. Reson., 64 (1985) 142.
- 186 M.T. Ashby and J.H. Enemark, J. Am. Chem. Soc., in press.
- 187 D. Rehder, Magn. Reson. Rev., 9 (1984) 125.
- 188 J.J. Dechter, Prog. Inorg. Chem., 33 (1985) 393.
- 189 G.A. Morris and M.J. Toohey, J. Magn. Reson., in press.
- 190 R.T.C. Brownlee and B.P. Shehan, J. Magn. Reson., in press.
- 191 S. Bristow, C.D. Garner, S.K. Hagyard, G.A. Morris, J.R. Nicholson and C.F. Mills, J. Chem. Soc. Chem. Commun., (1985) 479.
- 192 B. Piggott, S.D. Thorpe and R.N. Sheppard, Inorg. Chim. Acta, 103 (1985) L3.
- 193 M.V. Capparalli, B. Piggott, S.D. Thorpe, S.F. Wong and R.N. Shepard, Inorg. Chim. Acta, 106 (1985) 19.
- 194 B. Piggott, S.F. Wong and R.N. Shepard, Inorg. Chim. Acta, 107 (1985) 97.
- 195 M.A. Fedotov, Izv. Akad. Nauk. SSSR, Ser. Khim., (1984) 1166.
- 196 J.W. Faller and B.C. Whitmore, Organometallics, in press.
- 197 E.C. Alyea, A. Malek and J. Malito, Inorg. Chim. Acta, 101 (1985) 147.
- 198 H. Brunner, N. Janietz, J. Wachter, T. Zahn and M.L. Ziegler, Angew. Chem., Int. Ed. Engl., 24 (1985) 133.
- 199 F. Brunet, H. LeBail and J. Virlet, Ann. Chim. Fr., 9 (1984) 771.
- 200 J. Martin-Frère and Y. Jeannin, Inorg. Chem., 23 (1984) 3394.
- 201 M. Kozik, C.F. Hammer and L.C.W. Baker, J. Am. Chem. Soc., in press.